Multidimensional Databases and Data Warehousing

Multidimensional Databases and Data Warehousing

Author: Christian Jensen

Publisher: Morgan & Claypool Publishers

Published: 2010-05-05

Total Pages: 112

ISBN-13: 1608455386

DOWNLOAD EBOOK

The present book's subject is multidimensional data models and data modeling concepts as they are applied in real data warehouses. The book aims to present the most important concepts within this subject in a precise and understandable manner. The book's coverage of fundamental concepts includes data cubes and their elements, such as dimensions, facts, and measures and their representation in a relational setting; it includes architecture-related concepts; and it includes the querying of multidimensional databases. The book also covers advanced multidimensional concepts that are considered to be particularly important. This coverage includes advanced dimension-related concepts such as slowly changing dimensions, degenerate and junk dimensions, outriggers, parent-child hierarchies, and unbalanced, non-covering, and non-strict hierarchies. The book offers a principled overview of key implementation techniques that are particularly important to multidimensional databases, including materialized views, bitmap indices, join indices, and star join processing. The book ends with a chapter that presents the literature on which the book is based and offers further readings for those readers who wish to engage in more in-depth study of specific aspects of the book's subject. Table of Contents: Introduction / Fundamental Concepts / Advanced Concepts / Implementation Issues / Further Readings


Multidimensional Databases and Data Warehousing

Multidimensional Databases and Data Warehousing

Author: Christian Jensen

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 95

ISBN-13: 3031018419

DOWNLOAD EBOOK

The present book's subject is multidimensional data models and data modeling concepts as they are applied in real data warehouses. The book aims to present the most important concepts within this subject in a precise and understandable manner. The book's coverage of fundamental concepts includes data cubes and their elements, such as dimensions, facts, and measures and their representation in a relational setting; it includes architecture-related concepts; and it includes the querying of multidimensional databases. The book also covers advanced multidimensional concepts that are considered to be particularly important. This coverage includes advanced dimension-related concepts such as slowly changing dimensions, degenerate and junk dimensions, outriggers, parent-child hierarchies, and unbalanced, non-covering, and non-strict hierarchies. The book offers a principled overview of key implementation techniques that are particularly important to multidimensional databases, including materialized views, bitmap indices, join indices, and star join processing. The book ends with a chapter that presents the literature on which the book is based and offers further readings for those readers who wish to engage in more in-depth study of specific aspects of the book's subject. Table of Contents: Introduction / Fundamental Concepts / Advanced Concepts / Implementation Issues / Further Readings


Multidimensional Databases: Problems and Solutions

Multidimensional Databases: Problems and Solutions

Author: Rafanelli, Maurizio

Publisher: IGI Global

Published: 2002-07-01

Total Pages: 340

ISBN-13: 1591400864

DOWNLOAD EBOOK

Multidimensional Databases: Problems and Solutions strives to be the point of reference for the most important issues in the field of multidimensional databases. This book provides a brief history of the field and distinguishes between what is new in recent research and what is merely a renaming of old concepts. In addition Multidimensional Databases: Problems and Solutions outlines the incredible advances in technology and ever increasing demands from users in the most diverse applicative areas such as finance, medicine, statistics, business, and many more. Many of the most distinguished and well-known researchers have contributed to this book writing about their own specific field.


Building a Data Warehouse

Building a Data Warehouse

Author: Vincent Rainardi

Publisher: Apress

Published: 2008-03-11

Total Pages: 526

ISBN-13: 1430205288

DOWNLOAD EBOOK

Here is the ideal field guide for data warehousing implementation. This book first teaches you how to build a data warehouse, including defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Coverage then explains how to populate the data warehouse and explores how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. It also details testing and how to administer data warehouse operation.


The Data Warehouse Toolkit

The Data Warehouse Toolkit

Author: Ralph Kimball

Publisher: John Wiley & Sons

Published: 2011-08-08

Total Pages: 464

ISBN-13: 1118082141

DOWNLOAD EBOOK

This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.


Data Warehousing and Knowledge Discovery

Data Warehousing and Knowledge Discovery

Author: Mukesh Mohania

Publisher: Springer Science & Business Media

Published: 1999-08-20

Total Pages: 413

ISBN-13: 3540664580

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the First International Conference on Data Warehousing and Knowledge Discovery, DaWaK'99, held in Florence, Italy in August/September 1999. The 31 revised full papers and nine short papers presented were carefully reviewed and selected from 88 submissions. The book is divided in topical sections on data warehouse design; online analytical processing; view synthesis, selection, and optimization; multidimensional databases; knowledge discovery; association rules; inexing and object similarities; generalized association rules and data and web mining; time series data bases; data mining applications and data analysis.


Corporate Information Factory

Corporate Information Factory

Author: W. H. Inmon

Publisher: John Wiley & Sons

Published: 2002-03-14

Total Pages: 400

ISBN-13: 0471437506

DOWNLOAD EBOOK

The "father of data warehousing" incorporates the latesttechnologies into his blueprint for integrated decision supportsystems Today's corporate IT and data warehouse managers are required tomake a small army of technologies work together to ensure fast andaccurate information for business managers. Bill Inmon created theCorporate Information Factory to solve the needs ofthese managers. Since the First Edition, the design of the factoryhas grown and changed dramatically. This Second Edition, revisedand expanded by 40% with five new chapters, incorporates thesechanges. This step-by-step guide will enable readers to connecttheir legacy systems with the data warehouse and deal with a hostof new and changing technologies, including Web access mechanisms,e-commerce systems, ERP (Enterprise Resource Planning) systems. Thebook also looks closely at exploration and data mining servers foranalyzing customer behavior and departmental data marts forfinance, sales, and marketing.


Emerging Perspectives in Big Data Warehousing

Emerging Perspectives in Big Data Warehousing

Author: Taniar, David

Publisher: IGI Global

Published: 2019-06-28

Total Pages: 366

ISBN-13: 152255517X

DOWNLOAD EBOOK

The concept of a big data warehouse appeared in order to store moving data objects and temporal data information. Moving objects are geometries that change their position and shape continuously over time. In order to support spatio-temporal data, a data model and associated query language is needed for supporting moving objects. Emerging Perspectives in Big Data Warehousing is an essential research publication that explores current innovative activities focusing on the integration between data warehousing and data mining with an emphasis on the applicability to real-world problems. Featuring a wide range of topics such as index structures, ontology, and user behavior, this book is ideally designed for IT consultants, researchers, professionals, computer scientists, academicians, and managers.


Advanced Data Warehouse Design

Advanced Data Warehouse Design

Author: Elzbieta Malinowski

Publisher: Springer Science & Business Media

Published: 2008-01-22

Total Pages: 457

ISBN-13: 3540744053

DOWNLOAD EBOOK

This exceptional work provides readers with an introduction to the state-of-the-art research on data warehouse design, with many references to more detailed sources. It offers a clear and a concise presentation of the major concepts and results in the subject area. Malinowski and Zimányi explain conventional data warehouse design in detail, and additionally address two innovative domains recently introduced to extend the capabilities of data warehouse systems: namely, the management of spatial and temporal information.


Building a Scalable Data Warehouse with Data Vault 2.0

Building a Scalable Data Warehouse with Data Vault 2.0

Author: Daniel Linstedt

Publisher: Morgan Kaufmann

Published: 2015-09-15

Total Pages: 684

ISBN-13: 0128026480

DOWNLOAD EBOOK

The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: - How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. - Important data warehouse technologies and practices. - Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. - Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast - Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse - Demystifies data vault modeling with beginning, intermediate, and advanced techniques - Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0