Multicomponent Transport Algorithms

Multicomponent Transport Algorithms

Author: Alexandre Ern

Publisher: Springer Science & Business Media

Published: 2008-10-10

Total Pages: 439

ISBN-13: 354048650X

DOWNLOAD EBOOK

With the advent of sophisticated computer technology and the development of efficient computational algorithms, numerical modeling of complex multicomponent laminar reacting flows has emerged as an increasingly popular and firmly established area of scientific research. Progress in this area aims at obtaining better resolved and more accurate solutions of specific technological problems in less computer time. Therefore, it strongly relies upon the ability of evaluating fundamental parameters appearing in the physical models. Transport properties constitute a typical example of the above characterization. Evaluating transport coefficients of dilute polyatomic gas mixtures is often critical in many engineering applications, including chemical reactors, hypersonic flows, comb- tion phenomena, and chemical vapor deposition. Using the kinetic theory of dilute polyatomic gas mixtures as a starting point, this book offers a systematic development of a mathematical and numerical theory for the evaluation of transport properties in dilute polyatomic gas mixtures. The present investigation is not specifically.about the kinetic theory of gases, for which there are plenty of excellent and thoroughly do- mented textbooks; it is rather geared toward the development of new, efficient, and general algorithms with which to evaluate transport properties of dilute polyatomic gas mixtures at a reasonable computational cost.


Multicomponent Transport Algorithms

Multicomponent Transport Algorithms

Author: Alexandre Ern

Publisher: Springer Science & Business Media

Published: 1994-08-29

Total Pages: 439

ISBN-13: 3540583092

DOWNLOAD EBOOK

The authors made a special effort in presenting the material rigorously and comprehensively, thereby providing a complete source of reference for evaluating multicomponent transport coefficients.


Multicomponent Flow Modeling

Multicomponent Flow Modeling

Author: Vincent Giovangigli

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 334

ISBN-13: 1461215803

DOWNLOAD EBOOK

The goal of this is book to give a detailed presentation of multicomponent flow models and to investigate the mathematical structure and properties of the resulting system of partial differential equations. These developments are also illustrated by simulating numerically a typical laminar flame. Our aim in the chapters is to treat the general situation of multicomponent flows, taking into account complex chemistry and detailed transport phe nomena. In this book, we have adopted an interdisciplinary approach that en compasses a physical, mathematical, and numerical point of view. In par ticular, the links between molecular models, macroscopic models, mathe matical structure, and mathematical properties are emphasized. We also often mention flame models since combustion is an excellent prototype of multicomponent flow. This book still does not pretend to be a complete survey of existing models and related mathematical results. In particular, many subjects like multi phase-flows , turbulence modeling, specific applications, porous me dia, biological models, or magneto-hydrodynamics are not covered. We rather emphasize the fundamental modeling of multicomponent gaseous flows and the qualitative properties of the resulting systems of partial dif ferential equations. Part of this book was taught at the post-graduate level at the Uni versity of Paris, the University of Versailles, and at Ecole Poly technique in 1998-1999 to students of applied mathematics.


From Particle Systems to Partial Differential Equations II

From Particle Systems to Partial Differential Equations II

Author: Patrícia Gonçalves

Publisher: Springer

Published: 2015-04-04

Total Pages: 395

ISBN-13: 3319166379

DOWNLOAD EBOOK

This book focuses on mathematical problems concerning different applications in physics, engineering, chemistry and biology. It covers topics ranging from interacting particle systems to partial differential equations (PDEs), statistical mechanics and dynamical systems. The purpose of the second meeting on Particle Systems and PDEs was to bring together renowned researchers working actively in the respective fields, to discuss their topics of expertise and to present recent scientific results in both areas. Further, the meeting was intended to present the subject of interacting particle systems, its roots in and impacts on the field of physics and its relation with PDEs to a vast and varied public, including young researchers. The book also includes the notes from two mini-courses presented at the conference, allowing readers who are less familiar with these areas of mathematics to more easily approach them. The contributions will be of interest to mathematicians, theoretical physicists and other researchers interested in interacting particle systems, partial differential equations, statistical mechanics, stochastic processes, kinetic theory, dynamical systems and mathematical modeling aspects.


Multicomponent Mass Transfer

Multicomponent Mass Transfer

Author: Ross Taylor

Publisher: John Wiley & Sons

Published: 1993-12-16

Total Pages: 620

ISBN-13: 9780471574170

DOWNLOAD EBOOK

Addresses the use of rigorous multicomponent mass transfer models for the simulation and design of process equipment. Deals with the basic equations of diffusion in multicomponent systems. Describes various models and estimations of rates of mass and energy transfer. Covers applications of multicomponent mass transfer models to process design. Includes appendices providing necessary mathematical background. Contains a large number of numerical examples worked out in detail.


Reactive Flows, Diffusion and Transport

Reactive Flows, Diffusion and Transport

Author: Willi Jäger

Publisher: Springer Science & Business Media

Published: 2007-05-31

Total Pages: 659

ISBN-13: 354028396X

DOWNLOAD EBOOK

The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. The modeling and simulation within this book is accompanied by experiments.


Fundamentals of Turbulent and Multiphase Combustion

Fundamentals of Turbulent and Multiphase Combustion

Author: Kenneth Kuan-yun Kuo

Publisher: John Wiley & Sons

Published: 2012-07-03

Total Pages: 914

ISBN-13: 111809929X

DOWNLOAD EBOOK

Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.


Multicomponent and Multiscale Systems

Multicomponent and Multiscale Systems

Author: Juergen Geiser

Publisher: Springer

Published: 2015-08-21

Total Pages: 343

ISBN-13: 3319151177

DOWNLOAD EBOOK

This book examines the latest research results from combined multi-component and multi-scale explorations. It provides theory, considers underlying numerical methods and presents brilliant computational experimentation. Engineering computations featured in this monograph further offer particular interest to many researchers, engineers and computational scientists working in frontier modeling and applications of multicomponent and multiscale problems. Professor Geiser gives specific attention to the aspects of decomposing and splitting delicate structures and controlling decomposition and the rationale behind many important applications of multi-component and multi-scale analysis. Multicomponent and Multiscale Systems: Theory, Methods and Applications in Engineering also considers the question of why iterative methods can be powerful and more appropriate for well-balanced multiscale and multicomponent coupled nonlinear problems. The book is ideal for engineers and scientists working in theoretical and applied areas.


Fundamental Aspects of Plasma Chemical Physics

Fundamental Aspects of Plasma Chemical Physics

Author: Mario Capitelli

Publisher: Springer Science & Business Media

Published: 2013-04-02

Total Pages: 365

ISBN-13: 1441981721

DOWNLOAD EBOOK

Fundamental Aspects of Plasma Chemical Physics: Transport develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples are provided to clarify concepts and mathematical approaches. This book is the second of a series of three published by the Bari group on fundamental aspects of plasma chemical physics. The first book, Fundamental Aspects of Plasma Chemical Physics: Thermodynamics, is dedicated to plasma thermodynamics; and the third, Fundamental Aspects of Plasma Chemical Physics: Kinetics, deals with plasma kinetics.


Direct and Large-Eddy Simulation V

Direct and Large-Eddy Simulation V

Author: Rainer Friedrich

Publisher: Springer Science & Business Media

Published: 2004-04-30

Total Pages: 676

ISBN-13: 9781402020322

DOWNLOAD EBOOK

The fifth ERCOFfAC workshop 'Direct and Large-Eddy Simulation-5' (DLES-5) was held at the Munich University of Technology, August 27-29, 2003. It is part of a series of workshops that originated at the University of Surrey in 1994 with the intention to provide a forum for presentation and dis cussion of recent developments in the field of direct and large-eddy simula tion. Over the years the DLES-series has grown into a major international venue focussed on all aspects of DNS and LES, but also on hybrid methods like RANSILES coupling and detached-eddy simulation designed to provide reliable answers to technical flow problems at reasonable computational cost. DLES-5 was attended by 111 delegates from 15 countries. Its three-day pro gramme covered ten invited lectures and 63 original contributions partially pre sented in parallel sessions. The workshop was financially supported by the fol lowing companies, institutions and organizations: ANSYS Germany GmbH, AUDI AG, BMW Group, ERCOFfAC, FORTVER (Bavarian Research Asso ciation on Combustion), JM BURGERS CENTRE for Fluid Dynamics. Their help is gratefully acknowledged. The present Proceedings contain the written versions of nine invited lectures and fifty-nine selected and reviewed contributions which are organized in four parts: 1 Issues in LES modelling and numerics 2 Laminar-turbulent transition 3 Turbulent flows involving complex physical phenomena 4 Turbulent flows in complex geometries and in technical applications.