Selecting Models from Data

Selecting Models from Data

Author: P. Cheeseman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 475

ISBN-13: 1461226600

DOWNLOAD EBOOK

This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.


Regression Analysis by Example

Regression Analysis by Example

Author: Samprit Chatterjee

Publisher: John Wiley & Sons

Published: 2006-10-20

Total Pages: 403

ISBN-13: 0470055456

DOWNLOAD EBOOK

The essentials of regression analysis through practical applications Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgement. Regression Analysis by Example, Fourth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. This new edition features the following enhancements: Chapter 12, Logistic Regression, is expanded to reflect the increased use of the logit models in statistical analysis A new chapter entitled Further Topics discusses advanced areas of regression analysis Reorganized, expanded, and upgraded exercises appear at the end of each chapter A fully integrated Web page provides data sets Numerous graphical displays highlight the significance of visual appeal Regression Analysis by Example, Fourth Edition is suitable for anyone with an understanding of elementary statistics. Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions of the techniques themselves, the required assumptions, and the evaluated success of each technique. The methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.


Applied Regression Analysis and Other Multivariable Methods

Applied Regression Analysis and Other Multivariable Methods

Author: David G. Kleinbaum

Publisher: Duxbury

Published: 2008

Total Pages: 906

ISBN-13: 9780495384984

DOWNLOAD EBOOK

This bestseller will help you learn regression-analysis methods that you can apply to real-life problems. It highlights the role of the computer in contemporary statistics with numerous printouts and exercises that you can solve using the computer. The authors continue to emphasize model development, the intuitive logic and assumptions that underlie the techniques covered, the purposes, advantages, and disadvantages of the techniques, and valid interpretations of those techniques.


Understanding Regression Analysis

Understanding Regression Analysis

Author: Michael Patrick Allen

Publisher: Springer Science & Business Media

Published: 2004-05-31

Total Pages: 240

ISBN-13: 9780306484339

DOWNLOAD EBOOK

By assuming it is possible to understand regression analysis without fully comprehending all its underlying proofs and theories, this introduction to the widely used statistical technique is accessible to readers who may have only a rudimentary knowledge of mathematics. Chapters discuss: -descriptive statistics using vector notation and the components of a simple regression model; -the logic of sampling distributions and simple hypothesis testing; -the basic operations of matrix algebra and the properties of the multiple regression model; -testing compound hypotheses and the application of the regression model to the analyses of variance and covariance, and -structural equation models and influence statistics.


Understanding Regression Analysis

Understanding Regression Analysis

Author: Larry D. Schroeder

Publisher: SAGE Publications

Published: 2016-11-08

Total Pages: 122

ISBN-13: 1506361617

DOWNLOAD EBOOK

Understanding Regression Analysis: An Introductory Guide by Larry D. Schroeder, David L. Sjoquist, and Paula E. Stephan presents the fundamentals of regression analysis, from its meaning to uses, in a concise, easy-to-read, and non-technical style. It illustrates how regression coefficients are estimated, interpreted, and used in a variety of settings within the social sciences, business, law, and public policy. Packed with applied examples and using few equations, the book walks readers through elementary material using a verbal, intuitive interpretation of regression coefficients, associated statistics, and hypothesis tests. The Second Edition features updated examples and new references to modern software output.


Econometrics For Dummies

Econometrics For Dummies

Author: Roberto Pedace

Publisher: John Wiley & Sons

Published: 2013-06-05

Total Pages: 380

ISBN-13: 1118533879

DOWNLOAD EBOOK

Score your highest in econometrics? Easy. Econometrics can prove challenging for many students unfamiliar with the terms and concepts discussed in a typical econometrics course. Econometrics For Dummies eliminates that confusion with easy-to-understand explanations of important topics in the study of economics. Econometrics For Dummies breaks down this complex subject and provides you with an easy-to-follow course supplement to further refine your understanding of how econometrics works and how it can be applied in real-world situations. An excellent resource for anyone participating in a college or graduate level econometrics course Provides you with an easy-to-follow introduction to the techniques and applications of econometrics Helps you score high on exam day If you're seeking a degree in economics and looking for a plain-English guide to this often-intimidating course, Econometrics For Dummies has you covered.


Multiple Regression in Practice

Multiple Regression in Practice

Author: William Dale Berry

Publisher: SAGE

Published: 1985-05

Total Pages: 100

ISBN-13: 9780803920545

DOWNLOAD EBOOK

The authors provide a systematic treatment of the major problems involved in using regression analysis. They clearly and concisely discuss the consequences of violating the assumptions of the regression model, procedures for detecting violations, and strategies for dealing with these problems.


Applied Linear Statistical Models

Applied Linear Statistical Models

Author: Michael H. Kutner

Publisher: McGraw-Hill/Irwin

Published: 2005

Total Pages: 1396

ISBN-13: 9780072386882

DOWNLOAD EBOOK

Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.


Regression Analysis and its Application

Regression Analysis and its Application

Author: Richard F. Gunst

Publisher: Routledge

Published: 2018-04-27

Total Pages: 426

ISBN-13: 1351419293

DOWNLOAD EBOOK

Regression Analysis and Its Application: A Data-Oriented Approach answers the need for researchers and students who would like a better understanding of classical regression analysis. Useful either as a textbook or as a reference source, this book bridges the gap between the purely theoretical coverage of regression analysis and its practical application. The book presents regression analysis in the general context of data analysis. Using a teach-by-example format, it contains ten major data sets along with several smaller ones to illustrate the common characteristics of regression data and properties of statistics that are employed in regression analysis. The book covers model misspecification, residual analysis, multicollinearity, and biased regression estimators. It also focuses on data collection, model assumptions, and the interpretation of parameter estimates. Complete with an extensive bibliography, Regression Analysis and Its Application is suitable for statisticians, graduate and upper-level undergraduate students, and research scientists in biometry, business, ecology, economics, education, engineering, mathematics, physical sciences, psychology, and sociology. In addition, data collection agencies in the government and private sector will benefit from the book.