Multi-threaded Game Engine Design

Multi-threaded Game Engine Design

Author: Jonathan S. Harbour

Publisher: Course Technology

Published: 2011

Total Pages: 0

ISBN-13: 9781435454170

DOWNLOAD EBOOK

This book shows experienced game developers how to apply multi-thread techniques to game programming technology to improve game performance. Using Direct3D and C++, a sample game engine is created step-by-step throughout the course of the book, and numerous examples illustrate the concepts presented.


Programming Persistent Memory

Programming Persistent Memory

Author: Steve Scargall

Publisher: Apress

Published: 2020-01-09

Total Pages: 387

ISBN-13: 1484249321

DOWNLOAD EBOOK

Beginning and experienced programmers will use this comprehensive guide to persistent memory programming. You will understand how persistent memory brings together several new software/hardware requirements, and offers great promise for better performance and faster application startup times—a huge leap forward in byte-addressable capacity compared with current DRAM offerings. This revolutionary new technology gives applications significant performance and capacity improvements over existing technologies. It requires a new way of thinking and developing, which makes this highly disruptive to the IT/computing industry. The full spectrum of industry sectors that will benefit from this technology include, but are not limited to, in-memory and traditional databases, AI, analytics, HPC, virtualization, and big data. Programming Persistent Memory describes the technology and why it is exciting the industry. It covers the operating system and hardware requirements as well as how to create development environments using emulated or real persistent memory hardware. The book explains fundamental concepts; provides an introduction to persistent memory programming APIs for C, C++, JavaScript, and other languages; discusses RMDA with persistent memory; reviews security features; and presents many examples. Source code and examples that you can run on your own systems are included. What You’ll Learn Understand what persistent memory is, what it does, and the value it brings to the industry Become familiar with the operating system and hardware requirements to use persistent memory Know the fundamentals of persistent memory programming: why it is different from current programming methods, and what developers need to keep in mind when programming for persistence Look at persistent memory application development by example using the Persistent Memory Development Kit (PMDK)Design and optimize data structures for persistent memoryStudy how real-world applications are modified to leverage persistent memoryUtilize the tools available for persistent memory programming, application performance profiling, and debugging Who This Book Is For C, C++, Java, and Python developers, but will also be useful to software, cloud, and hardware architects across a broad spectrum of sectors, including cloud service providers, independent software vendors, high performance compute, artificial intelligence, data analytics, big data, etc.


Erlang Programming

Erlang Programming

Author: Francesco Cesarini

Publisher: "O'Reilly Media, Inc."

Published: 2009-06-11

Total Pages: 498

ISBN-13: 0596555857

DOWNLOAD EBOOK

This book is an in-depth introduction to Erlang, a programming language ideal for any situation where concurrency, fault tolerance, and fast response is essential. Erlang is gaining widespread adoption with the advent of multi-core processors and their new scalable approach to concurrency. With this guide you'll learn how to write complex concurrent programs in Erlang, regardless of your programming background or experience. Written by leaders of the international Erlang community -- and based on their training material -- Erlang Programming focuses on the language's syntax and semantics, and explains pattern matching, proper lists, recursion, debugging, networking, and concurrency. This book helps you: Understand the strengths of Erlang and why its designers included specific features Learn the concepts behind concurrency and Erlang's way of handling it Write efficient Erlang programs while keeping code neat and readable Discover how Erlang fills the requirements for distributed systems Add simple graphical user interfaces with little effort Learn Erlang's tracing mechanisms for debugging concurrent and distributed systems Use the built-in Mnesia database and other table storage features Erlang Programming provides exercises at the end of each chapter and simple examples throughout the book.


Programming Many-Core Chips

Programming Many-Core Chips

Author: András Vajda

Publisher: Springer Science & Business Media

Published: 2011-06-10

Total Pages: 233

ISBN-13: 1441997393

DOWNLOAD EBOOK

This book presents new concepts, techniques and promising programming models for designing software for chips with "many" (hundreds to thousands) processor cores. Given the scale of parallelism inherent to these chips, software designers face new challenges in terms of operating systems, middleware and applications. This will serve as an invaluable, single-source reference to the state-of-the-art in programming many-core chips. Coverage includes many-core architectures, operating systems, middleware, and programming models.


The Art of Concurrency

The Art of Concurrency

Author: Clay Breshears

Publisher: "O'Reilly Media, Inc."

Published: 2009-05-07

Total Pages: 306

ISBN-13: 0596555784

DOWNLOAD EBOOK

If you're looking to take full advantage of multi-core processors with concurrent programming, this practical book provides the knowledge and hands-on experience you need. The Art of Concurrency is one of the few resources to focus on implementing algorithms in the shared-memory model of multi-core processors, rather than just theoretical models or distributed-memory architectures. The book provides detailed explanations and usable samples to help you transform algorithms from serial to parallel code, along with advice and analysis for avoiding mistakes that programmers typically make when first attempting these computations. Written by an Intel engineer with over two decades of parallel and concurrent programming experience, this book will help you: Understand parallelism and concurrency Explore differences between programming for shared-memory and distributed-memory Learn guidelines for designing multithreaded applications, including testing and tuning Discover how to make best use of different threading libraries, including Windows threads, POSIX threads, OpenMP, and Intel Threading Building Blocks Explore how to implement concurrent algorithms that involve sorting, searching, graphs, and other practical computations The Art of Concurrency shows you how to keep algorithms scalable to take advantage of new processors with even more cores. For developing parallel code algorithms for concurrent programming, this book is a must.


Advanced Linux Programming

Advanced Linux Programming

Author: CodeSourcery LLC

Publisher: Sams Publishing

Published: 2001-06-11

Total Pages: 543

ISBN-13: 0672333627

DOWNLOAD EBOOK

This is the eBook version of the printed book. If the print book includes a CD-ROM, this content is not included within the eBook version. Advanced Linux Programming is divided into two parts. The first covers generic UNIX system services, but with a particular eye towards Linux specific information. This portion of the book will be of use even to advanced programmers who have worked with other Linux systems since it will cover Linux specific details and differences. For programmers without UNIX experience, it will be even more valuable. The second section covers material that is entirely Linux specific. These are truly advanced topics, and are the techniques that the gurus use to build great applications. While this book will focus mostly on the Application Programming Interface (API) provided by the Linux kernel and the C library, a preliminary introduction to the development tools available will allow all who purchase the book to make immediate use of Linux.


Operating Systems

Operating Systems

Author: William Stallings

Publisher: Prentice Hall

Published: 2009

Total Pages: 905

ISBN-13: 0136006329

DOWNLOAD EBOOK

For a one-semester undergraduate course in operating systems for computer science, computer engineering, and electrical engineering majors. Winner of the 2009 Textbook Excellence Award from the Text and Academic Authors Association (TAA)! Operating Systems: Internals and Design Principles is a comprehensive and unified introduction to operating systems. By using several innovative tools, Stallings makes it possible to understand critical core concepts that can be fundamentally challenging. The new edition includes the implementation of web based animations to aid visual learners. At key points in the book, students are directed to view an animation and then are provided with assignments to alter the animation input and analyze the results. The concepts are then enhanced and supported by end-of-chapter case studies of UNIX, Linux and Windows Vista. These provide students with a solid understanding of the key mechanisms of modern operating systems and the types of design tradeoffs and decisions involved in OS design. Because they are embedded into the text as end of chapter material, students are able to apply them right at the point of discussion. This approach is equally useful as a basic reference and as an up-to-date survey of the state of the art.


Understanding the Linux Kernel

Understanding the Linux Kernel

Author: Daniel Pierre Bovet

Publisher: "O'Reilly Media, Inc."

Published: 2002

Total Pages: 786

ISBN-13: 9780596002138

DOWNLOAD EBOOK

To thoroughly understand what makes Linux tick and why it's so efficient, you need to delve deep into the heart of the operating system--into the Linux kernel itself. The kernel is Linux--in the case of the Linux operating system, it's the only bit of software to which the term "Linux" applies. The kernel handles all the requests or completed I/O operations and determines which programs will share its processing time, and in what order. Responsible for the sophisticated memory management of the whole system, the Linux kernel is the force behind the legendary Linux efficiency. The new edition of Understanding the Linux Kernel takes you on a guided tour through the most significant data structures, many algorithms, and programming tricks used in the kernel. Probing beyond the superficial features, the authors offer valuable insights to people who want to know how things really work inside their machine. Relevant segments of code are dissected and discussed line by line. The book covers more than just the functioning of the code, it explains the theoretical underpinnings for why Linux does things the way it does. The new edition of the book has been updated to cover version 2.4 of the kernel, which is quite different from version 2.2: the virtual memory system is entirely new, support for multiprocessor systems is improved, and whole new classes of hardware devices have been added. The authors explore each new feature in detail. Other topics in the book include: Memory management including file buffering, process swapping, and Direct memory Access (DMA) The Virtual Filesystem and the Second Extended Filesystem Process creation and scheduling Signals, interrupts, and the essential interfaces to device drivers Timing Synchronization in the kernel Interprocess Communication (IPC) Program execution Understanding the Linux Kernel, Second Edition will acquaint you with all the inner workings of Linux, but is more than just an academic exercise. You'll learn what conditions bring out Linux's best performance, and you'll see how it meets the challenge of providing good system response during process scheduling, file access, and memory management in a wide variety of environments. If knowledge is power, then this book will help you make the most of your Linux system.