Multi-Spectral Signal and Its Processing
Author: Melinda
Publisher: Syiah Kuala University Press
Published: 2022-05-31
Total Pages: 104
ISBN-13: 6232645707
DOWNLOAD EBOOKAn event that rises and falls in the peak value of the amplitude of a certain data as measured through the data acquisition process is known as fluctuation. Fluctuations usually occur because the data obtained during the acquisition process is mixed with noise. Therefore, an analytical approach is needed that can process signal fluctuations to identify the characteristics of a material. This study uses an object made of H2O material used as a measurement platform or footing. The other ingredients are H2O mixed with HCl and H2O mixed with NaOH. The initial processing approach is related to the material identification system using a capacitive sensor based on the Impedance Spectroscopy (SI) method. This study aims to develop a method for processing multi-frequency signal fluctuations resulting from data acquisition of Multi-Spectral Capacitive Sensors (MSCS). An approach to representing the observed fluctuations in data acquisition results is based on the statistical mean and standard deviation of the observed noise spectral in a large number of data sets. The results of signal fluctuations are divided into several types, namely: Mean Fluctuation (MF), High Fluctuation (HF), and High High-Fluctuation (HHF). Several approaches are taken for processing fluctuations, such as the data consistency process to see the stability of the data from the initial processing stage. Next is the stage of grouping data with several new approach methods. Another method that we use is the segmentation method which uses several filters that can divide some signals in the form of fluctuation patterns into several segments. From several approach methods that have been carried out, the results show that some of these methods can identify multi-spectral fluctuation patterns so that it will be easier for the next identification process.