Multi-omic Data Integration

Multi-omic Data Integration

Author: Paolo Tieri

Publisher: Frontiers Media SA

Published: 2015-09-17

Total Pages: 137

ISBN-13: 2889196488

DOWNLOAD EBOOK

Stable, predictive biomarkers and interpretable disease signatures are seen as a significant step towards personalized medicine. In this perspective, integration of multi-omic data coming from genomics, transcriptomics, glycomics, proteomics, metabolomics is a powerful strategy to reconstruct and analyse complex multi-dimensional interactions, enabling deeper mechanistic and medical insight. At the same time, there is a rising concern that much of such different omic data –although often publicly and freely available- lie in databases and repositories underutilised or not used at all. Issues coming from lack of standardisation and shared biological identities are also well-known. From these considerations, a novel, pressing request arises from the life sciences to design methodologies and approaches that allow for these data to be interpreted as a whole, i.e. as intertwined molecular signatures containing genes, proteins, mRNAs and miRNAs, able to capture inter-layers connections and complexity. Papers discuss data integration approaches and methods of several types and extents, their application in understanding the pathogenesis of specific diseases or in identifying candidate biomarkers to exploit the full benefit of multi-omic datasets and their intrinsic information content. Topics of interest include, but are not limited to: • Methods for the integration of layered data, including, but not limited to, genomics, transcriptomics, glycomics, proteomics, metabolomics; • Application of multi-omic data integration approaches for diagnostic biomarker discovery in any field of the life sciences; • Innovative approaches for the analysis and the visualization of multi-omic datasets; • Methods and applications for systematic measurements from single/undivided samples (comprising genomic, transcriptomic, proteomic, metabolomic measurements, among others); • Multi-scale approaches for integrated dynamic modelling and simulation; • Implementation of applications, computational resources and repositories devoted to data integration including, but not limited to, data warehousing, database federation, semantic integration, service-oriented and/or wiki integration; • Issues related to the definition and implementation of standards, shared identities and semantics, with particular focus on the integration problem. Research papers, reviews and short communications on all topics related to the above issues were welcomed.


Multivariate Data Integration Using R

Multivariate Data Integration Using R

Author: Kim-Anh Lê Cao

Publisher: CRC Press

Published: 2021-11-08

Total Pages: 316

ISBN-13: 1000472191

DOWNLOAD EBOOK

Large biological data, which are often noisy and high-dimensional, have become increasingly prevalent in biology and medicine. There is a real need for good training in statistics, from data exploration through to analysis and interpretation. This book provides an overview of statistical and dimension reduction methods for high-throughput biological data, with a specific focus on data integration. It starts with some biological background, key concepts underlying the multivariate methods, and then covers an array of methods implemented using the mixOmics package in R. Features: Provides a broad and accessible overview of methods for multi-omics data integration Covers a wide range of multivariate methods, each designed to answer specific biological questions Includes comprehensive visualisation techniques to aid in data interpretation Includes many worked examples and case studies using real data Includes reproducible R code for each multivariate method, using the mixOmics package The book is suitable for researchers from a wide range of scientific disciplines wishing to apply these methods to obtain new and deeper insights into biological mechanisms and biomedical problems. The suite of tools introduced in this book will enable students and scientists to work at the interface between, and provide critical collaborative expertise to, biologists, bioinformaticians, statisticians and clinicians.


Integrating Omics Data

Integrating Omics Data

Author: George Tseng

Publisher: Cambridge University Press

Published: 2015-09-23

Total Pages: 497

ISBN-13: 1107069114

DOWNLOAD EBOOK

Tutorial chapters by leaders in the field introduce state-of-the-art methods to handle information integration problems of omics data.


Computational Genomics with R

Computational Genomics with R

Author: Altuna Akalin

Publisher: CRC Press

Published: 2020-12-16

Total Pages: 462

ISBN-13: 1498781861

DOWNLOAD EBOOK

Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.


Metagenomics of the Human Body

Metagenomics of the Human Body

Author: Karen E. Nelson

Publisher: Springer Science & Business Media

Published: 2010-11-16

Total Pages: 302

ISBN-13: 1441970894

DOWNLOAD EBOOK

The book brings a completely different perspective than available books by combining the information gained from the human genome with that derived from parallel metagenomic studies, and new results from investigating the effects of these microbes on the host immune system. Although there are a number of books that focus on the human genome that are currently available, there are no books that bring to the forefront the mix of the human genome and the genomes and metagenomes of the microbial species that live within and on us.


Multi-omic Data Integration in Oncology

Multi-omic Data Integration in Oncology

Author: Chiara Romualdi

Publisher: Frontiers Media SA

Published: 2020-12-03

Total Pages: 187

ISBN-13: 2889661512

DOWNLOAD EBOOK

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.


Data Analysis for Omic Sciences: Methods and Applications

Data Analysis for Omic Sciences: Methods and Applications

Author:

Publisher: Elsevier

Published: 2018-09-22

Total Pages: 732

ISBN-13: 0444640452

DOWNLOAD EBOOK

Data Analysis for Omic Sciences: Methods and Applications, Volume 82, shows how these types of challenging datasets can be analyzed. Examples of applications in real environmental, clinical and food analysis cases help readers disseminate these approaches. Chapters of note include an Introduction to Data Analysis Relevance in the Omics Era, Omics Experimental Design and Data Acquisition, Microarrays Data, Analysis of High-Throughput RNA Sequencing Data, Analysis of High-Throughput DNA Bisulfite Sequencing Data, Data Quality Assessment in Untargeted LC-MS Metabolomic, Data Normalization and Scaling, Metabolomics Data Preprocessing, and more. Presents the best reference book for omics data analysis Provides a review of the latest trends in transcriptomics and metabolomics data analysis tools Includes examples of applications in research fields, such as environmental, biomedical and food analysis


Multi-omic Data Integration

Multi-omic Data Integration

Author:

Publisher:

Published: 2015

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Stable, predictive biomarkers and interpretable disease signatures are seen as a significant step towards personalized medicine. In this perspective, integration of multi-omic data coming from genomics, transcriptomics, glycomics, proteomics, metabolomics is a powerful strategy to reconstruct and analyse complex multi-dimensional interactions, enabling deeper mechanistic and medical insight. At the same time, there is a rising concern that much of such different omic data -although often publicly and freely available- lie in databases and repositories underutilised or not used at all. Issues coming from lack of standardisation and shared biological identities are also well-known. From these considerations, a novel, pressing request arises from the life sciences to design methodologies and approaches that allow for these data to be interpreted as a whole, i.e. as intertwined molecular signatures containing genes, proteins, mRNAs and miRNAs, able to capture inter-layers connections and complexity. Papers discuss data integration approaches and methods of several types and extents, their application in understanding the pathogenesis of specific diseases or in identifying candidate biomarkers to exploit the full benefit of multi-omic datasets and their intrinsic information content. Topics of interest include, but are not limited to: • Methods for the integration of layered data, including, but not limited to, genomics, transcriptomics, glycomics, proteomics, metabolomics; • Application of multi-omic data integration approaches for diagnostic biomarker discovery in any field of the life sciences; • Innovative approaches for the analysis and the visualization of multi-omic datasets; • Methods and applications for systematic measurements from single/undivided samples (comprising genomic, transcriptomic, proteomic, metabolomic measurements, among others); • Multi-scale approaches for integrated dynamic modelling and simulation; • Implementation of applications, computational resources and repositories devoted to data integration including, but not limited to, data warehousing, database federation, semantic integration, service-oriented and/or wiki integration; • Issues related to the definition and implementation of standards, shared identities and semantics, with particular focus on the integration problem. Research papers, reviews and short communications on all topics related to the above issues were welcomed.


Precision Health and Medicine

Precision Health and Medicine

Author: Arash Shaban-Nejad

Publisher: Springer

Published: 2019-08-01

Total Pages: 197

ISBN-13: 3030244091

DOWNLOAD EBOOK

This book highlights the latest advances in the application of artificial intelligence to healthcare and medicine. It gathers selected papers presented at the 2019 Health Intelligence workshop, which was jointly held with the Association for the Advancement of Artificial Intelligence (AAAI) annual conference, and presents an overview of the central issues, challenges, and potential opportunities in the field, along with new research results. By addressing a wide range of practical applications, the book makes the emerging topics of digital health and precision medicine accessible to a broad readership. Further, it offers an essential source of information for scientists, researchers, students, industry professionals, national and international public health agencies, and NGOs interested in the theory and practice of digital and precision medicine and health, with an emphasis on risk factors in connection with disease prevention, diagnosis, and intervention.


Data Analytics in Bioinformatics

Data Analytics in Bioinformatics

Author: Rabinarayan Satpathy

Publisher: John Wiley & Sons

Published: 2021-01-20

Total Pages: 433

ISBN-13: 111978560X

DOWNLOAD EBOOK

Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.