Motion in Biological Systems

Motion in Biological Systems

Author: Max Augustus Lauffer

Publisher:

Published: 1989

Total Pages: 288

ISBN-13:

DOWNLOAD EBOOK

Describes the physico-chemical laws underlying various kinds of motion in biological systems, with particular emphasis on the mathematics involved. Each chapter covers one type of biological motion, employing mathematics no more advanced than elementary calculus. Explained are biological phenomena such as osmotic pressure, frictional resistance, diffusion, motion in electrical fields, potentials at interfaces, transport across membranes, and entropy-driven processes. Also covered are viscosity, conversion of chemical to mechanical energy, and critical concentrations.


Motion in Biological Systems

Motion in Biological Systems

Author: Max A. Lauffer

Publisher: Wiley-Liss

Published: 1988-12-15

Total Pages: 274

ISBN-13: 9780471503880

DOWNLOAD EBOOK

Describes the physico-chemical laws underlying various kinds of motion in biological systems, with particular emphasis on the mathematics involved. Each chapter covers one type of biological motion, employing mathematics no more advanced than elementary calculus. Explained are biological phenomena such as osmotic pressure, frictional resistance, diffusion, motion in electrical fields, potentials at interfaces, transport across membranes, and entropy-driven processes. Also covered are viscosity, conversion of chemical to mechanical energy, and critical concentrations.


Motion Analysis of Biological Systems

Motion Analysis of Biological Systems

Author: Rajat Emanuel Singh

Publisher: Springer

Published: 2024-04-12

Total Pages: 0

ISBN-13: 9783031529764

DOWNLOAD EBOOK

This book bridges the gap between biomechanics and engineering and presents advanced concepts and techniques for the analysis of motion in biological systems. Advanced theoretical and computational concepts applied to motion analysis of biological systems are presented, as well as how these concepts can assist in identifying strategies and developing methodologies for effective rehabilitation, and even detecting movement-related disorders. This is an ideal book for biomedical engineers, physical therapists, and researchers and students studying motion analysis of biological systems.


Fields, Forces, and Flows in Biological Systems

Fields, Forces, and Flows in Biological Systems

Author: Alan J Grodzinsky

Publisher: Garland Science

Published: 2011-03-08

Total Pages: 321

ISBN-13: 1136665560

DOWNLOAD EBOOK

Fields, Forces, and Flows in Biological Systems describes the fundamental driving forces for mass transport, electric current, and fluid flow as they apply to the biology and biophysics of molecules, cells, tissues, and organs. Basic mathematical and engineering tools are presented in the context of biology and physiology.The chapters are structured in a framework that moves across length scales from molecules to membranes to tissues. Examples throughout the text deal with applications involving specific biological tissues, cells, and macromolecules. In addition, a variety of applications focus on sensors, actuators, diagnostics, and microphysical measurement devices (e.g., bioMEMs/NEMs microfluidic devices) in which transport and electrokinetic interactions are critical.This textbook is written for advanced undergraduate and graduate students in biological and biomedical engineering and will be a valuable resource for interdisciplinary researchers including biophysicists, physical chemists, materials scientists, and chemical, electrical, and mechanical engineers seeking a common language on the subject.


The Cambridge Handbook of Applied Perception Research

The Cambridge Handbook of Applied Perception Research

Author: Robert R. Hoffman

Publisher: Cambridge University Press

Published: 2015-01-26

Total Pages: 1468

ISBN-13: 1139993534

DOWNLOAD EBOOK

The Cambridge Handbook of Applied Perception Research covers core areas of research in perception with an emphasis on its application to real-world environments. Topics include multisensory processing of information, time perception, sustained attention, and signal detection, as well as pedagogical issues surrounding the training of applied perception researchers. In addition to familiar topics, such as perceptual learning, the Handbook focuses on emerging areas of importance, such as human-robot coordination, haptic interfaces, and issues facing societies in the twenty-first century (such as terrorism and threat detection, medical errors, and the broader implications of automation). Organized into sections representing major areas of theoretical and practical importance for the application of perception psychology to human performance and the design and operation of human-technology interdependence, it also addresses the challenges to basic research, including the problem of quantifying information, defining cognitive resources, and theoretical advances in the nature of attention and perceptual processes.


New Trends in the Physics and Mechanics of Biological Systems

New Trends in the Physics and Mechanics of Biological Systems

Author: Martine Ben Amar

Publisher: OUP Oxford

Published: 2011-05-26

Total Pages: 384

ISBN-13: 0191621242

DOWNLOAD EBOOK

In July 2009, many experts in the mathematical modelling of biological sciences gathered in Les Houches for a 4-week summer school on the mechanics and physics of biological systems. The goal of the school was to present to students and researchers an integrated view of new trends and challenges in physical and mathematical aspects of biomechanics. While the scope for such a topic is very wide, we focused on problems where solid and fluid mechanics play a central role. The school covered both the general mathematical theory of mechanical biology in the context of continuum mechanics but also the specific modelling of particular systems in the biology of the cell, plants, microbes, and in physiology. These lecture notes are organised (as was the school) around five different main topics all connected by the common theme of continuum modelling for biological systems: Bio-fluidics, Bio-gels, Bio-mechanics, Bio-membranes, and Morphogenesis. These notes are not meant as a journal review of the topic but rather as a gentle tutorial introduction to the readers who want to understand the basic problematic in modelling biological systems from a mechanics perspective.