Molecular Simulation of Surfactant Self-assembly: From Mesoscale to Multi-scale Modeling

Molecular Simulation of Surfactant Self-assembly: From Mesoscale to Multi-scale Modeling

Author:

Publisher:

Published: 2001

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Fully atomistic computer simulations of surfactant self-assembly are extremely challenging because of the different length scales and the associated different times scales, implying large system sizes and tediously long simulations. To overcome this, the uninteresting degrees of freedom at the atomistic level can be integrated out leading to a meso-scale model, which can span the required length and time scales with less computational burden. We use such a meso-scale model to study surfactant self-assembly and how alcohols affect this self-assembly behavior in supercritical carbon dioxide. Here the surfactants and alcohols are represented as a chain of beads where each bead represents a set of atoms. This model is implemented into lattice Monte Carlo simulations. We show that short chain alcohols act as cosurfactants by concentrating in the surfactant layer of the aggregates, strongly decreasing micellar size and increasing the number of aggregates. In contrast long chain alcohols act as cosolvents by concentrating more in the solvent and increasing the micellar size. We then focus on systematically constructing a meso-scale model that preserves the important aspects of the atomistic model, while spanning these different length and time scales. The process of constructing this meso-scale model from the corresponding atomistic model is called coarse-graining. We first explore the rigorous coarse-graining technique in which we match the partition function of the atomistic model with that of the meso-scale model. Such a rigorous procedure has the advantage that it leads to the reproduction of all the structural and thermodynamic properties of the atomistic model in the meso-scale model. We develop a procedure to calculate the rigorous 1, 2 ... N-body effective interactions using Widom's particle insertion method. We implement this rigorous procedure for a binary ArD r system, where the degrees of freedom of Ar are integrated out. We observed that the structure at.


Dynamics of Surfactant Self-Assemblies

Dynamics of Surfactant Self-Assemblies

Author: Raoul Zana

Publisher: CRC Press

Published: 2005-03-30

Total Pages: 539

ISBN-13: 1420028227

DOWNLOAD EBOOK

Dynamics of Surfactant Self-Assemblies explains the dynamics of micellar equilibria, tracking surfactant exchange, and micelle formation/breakdown processes. Highlighting the structural similarities of amphiphilic block copolymers to surfactants, this volume elucidates the dynamics of more complex self-assemblies that surfactants and amphiphilic bl


Self Assembly

Self Assembly

Author: John A. Pelesko

Publisher: CRC Press

Published: 2007-05-21

Total Pages: 332

ISBN-13: 1584886889

DOWNLOAD EBOOK

Hailed as one of the key areas of nanoscience likely to shape future scientific research, self-assembly offers the most promising route to true molecular nanotechnology. Focusing on this dynamic new field, Self Assembly: The Science of Things That Put Themselves Together explores nature's self-assembly of structures, the use of it to build engineer


Surface and Colloid Science

Surface and Colloid Science

Author: Fernando Galembeck

Publisher: Springer Science & Business Media

Published: 2004-12-08

Total Pages: 334

ISBN-13: 9783540212478

DOWNLOAD EBOOK

This volume includes 58 contributions to the 11th International Conference on Surface and Colloid Science, a highly successful conference sponsored by the International Association of Colloid and Interface Scientists and held in Iguassu Falls, Brazil, in September 2003. Topics covered are the following: Biocolloids and Biological Applications, Charged Particles and Interfaces, Colloid Stability, Colloidal Dispersions, Environmental Colloidal Science, Interfaces and Adsorption, Nanostructures and Nanotechnology, Self-Assembly and Structured Fluids, Surfactants and Polymers, Technology and Applications, Colloids and Surfaces in Oil Production. Surface and colloid science has acquired great momentum during the past twenty years and this volume is a good display of new results and new directions in this important area.


Handbook of Microemulsion Science and Technology

Handbook of Microemulsion Science and Technology

Author: Promod Kumar

Publisher: CRC Press

Published: 2018-05-02

Total Pages: 864

ISBN-13: 1351442341

DOWNLOAD EBOOK

Demonstrating methods for overcoming stability issues in paints, wax dispersions, cosmetics, food products, and other industrial applications, this reference probes theoretical and practical issues surrounding microemulsion science and technology. Featuring the work of 51 international experts and containing almost 1000 instructive tables, equations, and illustrations, this book reviews the performance of, and prospects for, experimental methods such as X-ray diffraction, transmission electron microscopy (TEM), light scattering, small angle neutron scattering, viscosimetry, and nuclear magnetic resonance (NMR) to characterize various aspects of the dispersed phase of microemulsions.