Monte Carlo Simulations of Temperature-programmed and Isothermal Desorption from Single-crystal Surfaces

Monte Carlo Simulations of Temperature-programmed and Isothermal Desorption from Single-crystal Surfaces

Author:

Publisher:

Published: 1990

Total Pages: 316

ISBN-13:

DOWNLOAD EBOOK

The kinetics of temperature-programmed and isothermal desorption have been simulated with a Monte Carlo model. Included in the model are the elementary steps of adsorption, surface diffusion, and desorption. Interactions between adsorbates and the metal as well as interactions between the adsorbates are taken into account with the Bond-Order-Conservation-Morse-Potential method. The shape, number, and location of the TPD peaks predicted by the simulations is shown to be sensitive to the binding energy, coverage, and coordination of the adsorbates. In addition, the occurrence of lateral interactions between adsorbates is seen to strongly effect the distribution of adsorbates is seen to strongly effect the distribution of adsorbates on the surface. Temperature-programmed desorption spectra of a single type of adsorbate have been simulated for the following adsorbate-metal systems: CO on Pd(100); H2 on Mo(100); and H2 on Ni(111). The model predictions are in good agreement with experimental observation. TPD spectra have also been simulated for two species coadsorbed on a surface; the model predictions are in qualitative agreement with the experimental results for H2 coadsorbed with strongly bound atomic species on Mo(100) and Fe(100) surfaces as well as for CO and H2 coadsorbed on Ni(100) and Rh(100) surfaces. Finally, the desorption kinetics of CO from Pd(100) and Ni(100) in the presence of gas-phase CO have been examined. The effect of pressure is seen to lead to an increase in the rate of desorption relative to the rate observed in the absence of gas-phase CO. This increase arises as a consequence of higher coverages and therefore stronger lateral interactions between the adsorbed CO molecules.


Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences

Author: Wade H. Shafer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 350

ISBN-13: 1461528321

DOWNLOAD EBOOK

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 36 (thesis year 1991) a total of 11,024 thesis titles from 23 Canadian and 161 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 36 reports theses submitted in 1991, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.


Principles of Adsorption and Reaction on Solid Surfaces

Principles of Adsorption and Reaction on Solid Surfaces

Author: Richard I. Masel

Publisher: John Wiley & Sons

Published: 1996-03-22

Total Pages: 826

ISBN-13: 9780471303923

DOWNLOAD EBOOK

Principles of Adsorption and Reaction on Solid Surfaces As with other books in the field, Principles of Adsorption and Reaction on Solid Surfaces describes what occurs when gases come in contact with various solid surfaces. But, unlike all the others, it also explains why. While the theory of surface reactions is still under active development, the approach Dr. Richard Masel takes in this book is to outline general principles derived from thermodynamics and reaction rate theory that can be applied to reactions on surfaces, and to indicate ways in which these principles may be applied. The book also provides a comprehensive treatment of the latest quantitative surface modeling techniques with numerous examples of their use in the fields of chemical engineering, physical chemistry, and materials science. A valuable working resource and an excellent graduate-level text, Principles of Adsorption and Reaction on Solid Surfaces provides readers with: * A detailed look at the latest advances in understanding and quantifying reactions on surfaces * In-depth reviews of all crucial background material * 40 solved examples illustrating how the methods apply to catalysis, physical vapor deposition, chemical vapor deposition, electrochemistry, and more * 340 problems and practice exercises * Sample computer programs * Universal plots of many key quantities * Detailed, class-tested derivations to help clarify key results The recent development of quantitative techniques for modeling surface reactions has led to a number of exciting breakthroughs in our understanding of what happens when gases come in contact with solid surfaces. While many books have appeared describing various experimental modeling techniques and the results obtained through their application, until now, there has been no single-volume reference devoted to the fundamental principles governing the processes observed. The first book to focus on governing principles rather than experimental techniques or specific results, Principles of Adsorption and Reaction on Solid Surfaces provides students and professionals with a quantitative treatment of the application of principles derived from the fields of thermodynamics and reaction rate theory to the investigation of gas adsorption and reaction on solid surfaces. Writing for a broad-based audience including, among others, chemical engineers, chemists, and materials scientists, Dr. Richard I. Masel deftly balances basic background in areas such as statistical mechanics and kinetics with more advanced applications in specialized areas. Principles of Adsorption and Reaction on Solid Surfaces was also designed to provide readers an opportunity to quickly familiarize themselves with all of the important quantitative surface modeling techniques now in use. To that end, the author has included all of the key equations involved as well as numerous real-world illustrations and solved examples that help to illustrate how the equations can be applied. He has also provided computer programs along with universal plots that make it easy for readers to apply results to their own problems with little computational effort. Principles of Adsorption and Reaction on Solid Surfaces is a valuable working resource for chemical engineers, physical chemists, and materials scientists, and an excellent text for graduate students in those disciplines.


Monte Carlo Diffusion Studies

Monte Carlo Diffusion Studies

Author: D.J. Fisher

Publisher: Trans Tech Publications Ltd

Published: 2015-02-13

Total Pages: 266

ISBN-13: 3038266507

DOWNLOAD EBOOK

The Monte Carlo method, largely the brainchild of Stanislaw Ulam and first implemented by John von Neumann, depends upon the use of digital computers and is therefore very much a product of post-WW2 technological developments; even though one could argue that the Buffon’s Needle estimate was an ancestor of the technique. The probabilistic nature of the method makes it a good choice for modeling those physical phenomena which involve similarly random motions at the atomic scale; a particularly good example being that of mass diffusion. The present volume comprises a compilation of selected Monte Carlo studies of diffusion in borides, carbides, diamond, graphene, graphite, hydrides, ice, metals, oxides, semiconductors, sulfides, zeolites and other materials. General aspects of diffusion are also covered. The 516 entries cover the period from 1966 to 2014.


Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences

Author: W. H. Shafer

Publisher: Springer Science & Business Media

Published: 1993

Total Pages: 368

ISBN-13: 9780306444951

DOWNLOAD EBOOK

Volume 36 reports (for thesis year 1991) a total of 11,024 thesis titles from 23 Canadian and 161 US universities. The organization of the volume, as in past years, consists of thesis titles arranged by discipline, and by university within each discipline. The titles are contributed by any and all a


An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions

An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions

Author: A.P.J. Jansen

Publisher: Springer

Published: 2012-05-31

Total Pages: 266

ISBN-13: 364229488X

DOWNLOAD EBOOK

Kinetic Monte Carlo (kMC) simulations still represent a quite new area of research, with a rapidly growing number of publications. Broadly speaking, kMC can be applied to any system describable as a set of minima of a potential-energy surface, the evolution of which will then be regarded as hops from one minimum to a neighboring one. The hops in kMC are modeled as stochastic processes and the algorithms use random numbers to determine at which times the hops occur and to which neighboring minimum they go. Sometimes this approach is also called dynamic MC or Stochastic Simulation Algorithm, in particular when it is applied to solving macroscopic rate equations. This book has two objectives. First, it is a primer on the kMC method (predominantly using the lattice-gas model) and thus much of the book will also be useful for applications other than to surface reactions. Second, it is intended to teach the reader what can be learned from kMC simulations of surface reaction kinetics. With these goals in mind, the present text is conceived as a self-contained introduction for students and non-specialist researchers alike who are interested in entering the field and learning about the topic from scratch.


Nano-Surface Chemistry

Nano-Surface Chemistry

Author: Morton Rosoff

Publisher: CRC Press

Published: 2001-09-27

Total Pages: 706

ISBN-13: 9780203908488

DOWNLOAD EBOOK

Containing more than 2600 references and over 550 equations, drawings, tables, photographs, and micrographs, This book describes hierarchical assemblies in biology and biological processes that occur at the nanoscale across membranes and at interfaces. It covers recurrent themes in nanocolloid science, including self-assembly, construction of supramolecular architecture, nanoconfinement and compartmentalization, measurement and control of interfacial forces, novel synthetic materials, and computer simulation. The authors reviews surface forces apparatus measurements of two-dimensional organized ensembles at solid-liquid interfaces.


Carbon in Earth

Carbon in Earth

Author: Robert M. Hazen

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-12-17

Total Pages: 716

ISBN-13: 1501508318

DOWNLOAD EBOOK

Volume 75 of Reviews in Mineralogy and Geochemistry addresses a range of questions that were articulated in May 2008 at the First Deep Carbon Cycle Workshop in Washington, DC. At that meeting 110 scientists from a dozen countries set forth the state of knowledge about Earth's carbon. They also debated the key opportunities and top objectives facing the community. Subsequent deep carbon meetings in Bejing, China (2010), Novosibirsk, Russia (2011), and Washington, DC (2012), as well as more than a dozen smaller workshops, expanded and refined the DCO's decadal goals. The 20 chapters that follow elaborate on those opportunities and objectives.