While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, produ
This Spotlight offers a perspective on the role of Monte Carlo simulation in the analysis and tolerancing of optical systems. The book concisely explores two overarching questions: (1) What principles can we adopt from a variety of statistical methods - such as the analysis of variance (ANOVA), "root sum of squares" (RSS), and Monte Carlo simulation - to analyze variability in complex optical systems? (2) When we assign perturbations to component variables (such as tilts and radii of curvatures) subject to arbitrary probability distributions, are the resulting distributions of system parameters (such as EFL, RMS spot size, and MTF) necessarily normal? These questions address the problem of analyzing and managing variability in modern product development, where many functions integrate to produce a complete instrument. By discussing key concepts from optics, multivariable calculus, and statistics, and applying them to two practical examples in modern technology, this book highlights the role Monte Carlo simulations play in the tolerancing of optical systems that comprise many components of variation.
This comprehensive handbook covers all major aspects of optomechanical engineering - from conceptual design to fabrication and integration of complex optical systems. The practical information within is ideal for optical and optomechanical engineers and scientists involved in the design, development and integration of modern optical systems for commercial, space, and military applications. Charts, tables, figures, and photos augment this already impressive text. Fully revised, the new edition includes 4 new chapters: Plastic optics, Optomechanical tolerancing and error budgets, Analysis and design of flexures, and Optomechanical constraint equations.
Geometrical tolerancing is used to specify and control the form, location and orientation of the features of components and manufactured parts. This book presents the state of the art of geometrical tolerancing, covers the latest ISO and ANSI/ASME standards and is a comprehensive reference and guide for all professional engineers, designers, CAD users, quality managers and anyone involved in the creation or interpretation of CAD plans or engineering designs and specifications. For all design and manufacturing engineers working with these internationally required design standards Covers ISO and ANSI geometrical tolerance standards, including the 2005 revisions to the ISO standard Geometrical tolerancing is used in the preparation and interpretation of the design for any manufactured component or item: essential information for designers, engineers and CAD professionals
This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It will be a useful and practical guide for students and experienced researchers working in plasma spectroscopy, spectra simulations, and related fields.