Monoids And Semigroups With Applications - Proceedings Of The Berkeley Workshop In Monoids

Monoids And Semigroups With Applications - Proceedings Of The Berkeley Workshop In Monoids

Author: John Rhodes

Publisher: #N/A

Published: 1991-03-06

Total Pages: 548

ISBN-13: 9814612715

DOWNLOAD EBOOK

The purpose of the Berkeley Workshop on Monoids was to give expository talks by the most qualified experts in the emerging main areas of monoid and semigroup theory including applications to theoretical computer science. This was supplemented with current research papers. The topics covered, in an accessible way for the mathematical and theoretical computer community, were: Kernels and expansions in semigroup theory; Implicit operations; Inverse monoids; Varieties of semigroups and universal algebra; Linear semigroups and monoids of Lie type; Monoids acting on tress; Synthesis theorem, regular semigroups, and applications; Type-II conjecture; Application to theoretical computer science and decision problems.


Monoids, Acts and Categories

Monoids, Acts and Categories

Author: Mati Kilp

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 549

ISBN-13: 3110812908

DOWNLOAD EBOOK

The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)


Representation Theory of Finite Monoids

Representation Theory of Finite Monoids

Author: Benjamin Steinberg

Publisher: Springer

Published: 2016-12-09

Total Pages: 324

ISBN-13: 3319439324

DOWNLOAD EBOOK

This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.


Finitely Generated Commutative Monoids

Finitely Generated Commutative Monoids

Author: J. C. Rosales

Publisher: Nova Publishers

Published: 1999

Total Pages: 204

ISBN-13: 9781560726708

DOWNLOAD EBOOK

A textbook for an undergraduate course, requiring only a knowledge of basic linear algebra. Explains how to compute presentations for finitely generated cancellative monoids, and from a presentation of a monoid, decide whether this monoid is cancellative, reduced, separative, finite, torsion free, group, affine, full, normal, etc. Of most interest to people working with semigroup theory, but also in other areas of algebra. Annotation copyrighted by Book News, Inc., Portland, OR


Semigroups And Applications

Semigroups And Applications

Author: John M Howie

Publisher: World Scientific

Published: 1998-12-08

Total Pages: 290

ISBN-13: 9814545430

DOWNLOAD EBOOK

This volume contains contributions from leading experts in the rapidly developing field of semigroup theory. The subject, now some 60 years old, began by imitating group theory and ring theory, but quickly developed an impetus of its own, and the semigroup turned out to be the most useful algebraic object in theoretical computer science.


Semigroups Of Matrices

Semigroups Of Matrices

Author: Jan Okninski

Publisher: World Scientific

Published: 1998-07-31

Total Pages: 327

ISBN-13: 981449626X

DOWNLOAD EBOOK

This book is concerned with the structure of linear semigroups, that is, subsemigroups of the multiplicative semigroup Mn(K) of n × n matrices over a field K (or, more generally, skew linear semigroups — if K is allowed to be a division ring) and its applications to certain problems on associative algebras, semigroups and linear representations. It is motivated by several recent developments in the area of linear semigroups and their applications. It summarizes the state of knowledge in this area, presenting the results for the first time in a unified form. The book's point of departure is a structure theorem, which allows the use of powerful techniques of linear groups. Certain aspects of a combinatorial nature, connections with the theory of linear representations and applications to various problems on associative algebras are also discussed.


Semigroups and Their Applications

Semigroups and Their Applications

Author: Simon M. Goberstein

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 214

ISBN-13: 940093839X

DOWNLOAD EBOOK

Most papers published in this volume are based on lectures presented at the Chico Conference on Semigroups held on the Chico campus of the Cal ifornia State University on April 10-12, 1986. The conference was spon sored by the California State University, Chico in cooperation with the Engineering Computer Sciences Department of the Pacific Gas and Electric Company. The program included seven 50-minute addresses and seventeen 30-minute lectures. Speakers were invited by the organizing committee consisting of S. M. Goberstein and P. M. Higgins. The purpose of the conference was to bring together some of the leading researchers in the area of semigroup theory for a discussion of major recent developments in the field. The algebraic theory of semigroups is growing so rapidly and new important results are being produced at such a rate that the need for another meeting was well justified. It was hoped that the conference would help to disseminate new results more rapidly among those working in semi groups and related areas and that the exchange of ideas would stimulate research in the subject even further. These hopes were realized beyond all expectations.


Finite Semigroups And Universal Algebra

Finite Semigroups And Universal Algebra

Author: Jorge Almeida

Publisher: World Scientific

Published: 1995-01-27

Total Pages: 532

ISBN-13: 9814501565

DOWNLOAD EBOOK

Motivated by applications in theoretical computer science, the theory of finite semigroups has emerged in recent years as an autonomous area of mathematics. It fruitfully combines methods, ideas and constructions from algebra, combinatorics, logic and topology. In simple terms, the theory aims at a classification of finite semigroups in certain classes called “pseudovarieties”. The classifying characteristics have both structural and syntactical aspects, the general connection between them being part of universal algebra. Besides providing a foundational study of the theory in the setting of arbitrary abstract finite algebras, this book stresses the syntactical approach to finite semigroups. This involves studying (relatively) free and profinite free semigroups and their presentations. The techniques used are illustrated in a systematic study of various operators on pseudovarieties of semigroups.