The aim of this book is to explain the unusual properties of both pure liquid water and simple aqueous solutions, in terms of the properties of single molecules and interactions among small numbers of water molecules. It is mostly the result of the author's own research spanning over 40 years in the field of aqueous solutions. An understanding of the properties of liquid water is a prelude to the understanding of the role of water in biological systems and for the evolvement of life.The book is targeted at anyone who is interested in the outstanding properties of water and its role in biological systems. It is addressed to both students and researchers in chemistry, physics and biology.
"The aim of this book is to explain the unusual properties of both pure liquid water and simple aqueous solutions, in terms of the properties of single molecules and interactions among small numbers of water molecules. It is mostly the result of the author's own research spanning over 40 years in the field of aqueous solutions."--Jacket.
"The aim of this book is to explain the unusual properties of both pure liquid water and simple aqueous solutions, in terms of the properties of single molecules and interactions among small numbers of water molecules. It is mostly the result of the author's own research spanning over 40 years in the field of aqueous solutions."--Jacket.
The molecular theory of water and aqueous solutions has only recently emerged as a new entity of research, although its roots may be found in age-old works. The purpose of this book is to present the molecular theory of aqueous fluids based on the framework of the general theory of liquids. The style of the book is introductory in character, but the reader is presumed to be familiar with the basic properties of water [for instance, the topics reviewed by Eisenberg and Kauzmann (1969)] and the elements of classical thermodynamics and statistical mechanics [e.g., Denbigh (1966), Hill (1960)] and to have some elementary knowledge of probability [e.g., Feller (1960), Papoulis (1965)]. No other familiarity with the molecular theory of liquids is presumed. For the convenience of the reader, we present in Chapter 1 the rudi ments of statistical mechanics that are required as prerequisites to an under standing of subsequent chapters. This chapter contains a brief and concise survey of topics which may be adopted by the reader as the fundamental "rules of the game," and from here on, the development is very slow and detailed.
The aim of this book is to explain the unusual properties of both pure liquid water and simple aqueous solutions, in terms of the properties of single molecules and interactions among small numbers of water molecules. It is mostly the result of the author's own research spanning over 40 years in the field of aqueous solutions. An understanding of the properties of liquid water is a prelude to the understanding of the role of water in biological systems and for the evolvement of life. The book is targeted at anyone who is interested in the outstanding properties of water and its role in biological systems. It is addressed to both students and researchers in chemistry, physics and biology.
The International Association for the Properties of Water and Steam (IAPWS) has produced this book in order to provide an accessible, up-to-date overview of important aspects of the physical chemistry of aqueous systems at high temperatures and pressures. These systems are central to many areas of scientific study and industrial application, including electric power generation, industrial steam systems, hydrothermal processing of materials, geochemistry, and environmental applications. The authors' goal is to present the material at a level that serves both the graduate student seeking to learn the state of the art, and also the industrial engineer or chemist seeking to develop additional expertise or to find the data needed to solve a specific problem. The wide range of people for whom this topic is important provides a challenge. Advanced work in this area is distributed among physical chemists, chemical engineers, geochemists, and other specialists, who may not be aware of parallel work by those outside their own specialty. The particular aspects of high-temperature aqueous physical chemistry of interest to one industry may be irrelevant to another; yet another industry might need the same basic information but in a very different form. To serve all these constituencies, the book includes several chapters that cover the foundational thermophysical properties (such as gas solubility, phase behavior, thermodynamic properties of solutes, and transport properties) that are of interest across numerous applications. The presentation of these topics is intended to be accessible to readers from a variety of backgrounds. Other chapters address fundamental areas of more specialized interest, such as critical phenomena and molecular-level solution structure. Several chapters are more application-oriented, addressing areas such as power-cycle chemistry and hydrothermal synthesis. As befits the variety of interests addressed, some chapters provide more theoretical guidance while others, such as those on acid/base equilibria and the solubilities of metal oxides and hydroxides, emphasize experimental techniques and data analysis.- Covers both the theory and applications of all Hydrothermal solutions - Provides an accessible, up-to-date overview of important aspects of the physical chemistry of aqueous systems at high temperatures and pressures- The presentation of the book is understandable to readers from a variety of backgrounds
Provides critical experimental studies and state-of-the-art theoretical analyses of organic reactions in which the role of the aqueous environment is particularly clear. Examines equilibrium and nonequilibrium solvent effects for a variety of chemical processes. Provides an overview of the scope and utility of the present broad array of modeling techniques for mimicking aqueous solution. Includes detailed studies of the hydrophobic effect as it influences protein folding and organic reactivity. Examines the effect of aqueous solvation on biological macromolecules and interfaces.