Molecular Spectroscopy—Experiment and Theory

Molecular Spectroscopy—Experiment and Theory

Author: Andrzej Koleżyński

Publisher: Springer

Published: 2018-10-10

Total Pages: 529

ISBN-13: 3030013553

DOWNLOAD EBOOK

This book reviews various aspects of molecular spectroscopy and its application in materials science, chemistry, physics, medicine, the arts and the earth sciences. Written by an international group of recognized experts, it examines how complementary applications of diverse spectroscopic methods can be used to study the structure and properties of different materials. The chapters cover the whole spectrum of topics related to theoretical and computational methods, as well as the practical application of spectroscopic techniques to study the structure and dynamics of molecular systems, solid-state crystalline and amorphous materials, surfaces and interfaces, and biological systems. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in the latest developments in the theory, experimentation, measurement and application of various advanced spectroscopic methods for the study of materials.


Molecules and Radiation

Molecules and Radiation

Author: Jeffrey I. Steinfeld

Publisher: Courier Corporation

Published: 2012-11-09

Total Pages: 514

ISBN-13: 0486137546

DOWNLOAD EBOOK

This unified treatment introduces upper-level undergraduates and graduate students to the concepts and methods of modern molecular spectroscopy and their applications to quantum electronics, lasers, and related optical phenomena. Starting with a review of the prerequisite quantum mechanical background, the text examines atomic spectra and diatomic molecules, including the rotation and vibration of diatomic molecules and their electronic spectra. A discussion of rudimentary group theory advances to considerations of the rotational spectra of polyatomic molecules and their vibrational and electronic spectra; molecular beams, masers, and lasers; and a variety of forms of spectroscopy, including optical resonance spectroscopy, coherent transient spectroscopy, multiple-photon spectroscopy, and spectroscopy beyond molecular constants. The text concludes with a series of useful appendixes.


Molecular Spectroscopy

Molecular Spectroscopy

Author: Jeanne L. McHale

Publisher: CRC Press

Published: 2017-07-06

Total Pages: 477

ISBN-13: 1466586591

DOWNLOAD EBOOK

This textbook offers an introduction to the foundations of spectroscopic methods and provides a bridge between basic concepts and experimental applications in fields as diverse as materials science, biology, solar energy conversion, and environmental science. The author emphasizes the use of time-dependent theory to link the spectral response in the frequency domain to the behavior of molecules in the time domain, strengthened by two brand new chapters on nonlinear optical spectroscopy and time-resolved spectroscopy. Theoretical underpinnings are presented to the extent necessary for readers to understand how to apply spectroscopic tools to their own interests.


Frontiers of Molecular Spectroscopy

Frontiers of Molecular Spectroscopy

Author: Jaan Laane

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 741

ISBN-13: 0080932371

DOWNLOAD EBOOK

Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapters discuss work on biological systems and three others represent laser physics. The recent advances in cavity ringdown spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS), two-dimensional correlation spectroscopy (2D-COS), and microwave techniques are all covered. Chapters on electronic excited states, molecular dynamics, symmetry applications, and neutron scattering are also included and demonstrate the wide utility of spectroscopic techniques. Provides comprehensive coverage of present spectroscopic investigations Features 20 chapters written by leading researchers in the field Covers the important role of molecular spectroscopy in research concerned with chemistry, physics, and biology


Molecular Symmetry and Spectroscopy

Molecular Symmetry and Spectroscopy

Author: Philip Bunker

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 441

ISBN-13: 032315025X

DOWNLOAD EBOOK

Molecular Symmetry and Spectroscopy deals with the use of group theory in quantum mechanics in relation to problems in molecular spectroscopy. It discusses the use of the molecular symmetry group, whose elements consist of permutations of identical nuclei with or without inversion. After reviewing the permutation groups, inversion operation, point groups, and representation of groups, the book describes the use of representations for labeling molecular energy. The text explains an approximate time independent Schrödinger equation for a molecule, as well as the effect of a nuclear permutation or the inversion of E* on such equation. The book also examines the expression for the complete molecular Hamiltonian and the several groups of operations commuting with the Hamiltonian. The energy levels of the Hamiltonian can then be symmetrically labeled by the investigator using the irreducible representations of these groups. The text explains the two techniques to change coordinates in a Schrödinger equation, namely, (1) by using a diatomic molecule in the rovibronic Schrödinger equation, and (2) by a rigid nonlinear polyatomic molecule. The book also explains that using true symmetry, basis symmetry, near symmetry, and near quantum numbers, the investigator can label molecular energy levels. The text can benefit students of molecular spectroscopy, academicians, and investigators of molecular chemistry or quantum mechanics.


Basic Atomic and Molecular Spectroscopy

Basic Atomic and Molecular Spectroscopy

Author: John Michael Hollas

Publisher: Royal Society of Chemistry

Published: 2002

Total Pages: 196

ISBN-13: 9780854046676

DOWNLOAD EBOOK

The latest in the 'Tutorial Chemistry Texts' series, 'Basic Atomic and Molecular Spectroscopy' contains chapters on quantization in polyelectronic atoms, molecular vibrations and electronic spectroscopy.


Condensed-Phase Molecular Spectroscopy and Photophysics

Condensed-Phase Molecular Spectroscopy and Photophysics

Author: Anne Myers Kelley

Publisher: John Wiley & Sons

Published: 2012-11-15

Total Pages: 252

ISBN-13: 1118493060

DOWNLOAD EBOOK

An introduction to one of the fundamental tools in chemical research—spectroscopy and photophysics in condensed-phase and extended systems A great deal of modern research in chemistry and materials science involves the interaction of radiation with condensed-phase systems such as molecules in liquids and solids as well as molecules in more complex media, molecular aggregates, metals, semiconductors, and composites. Condensed-Phase Molecular Spectroscopy and Photophysics was developed to fill the need for a textbook that introduces the basics of traditional molecular spectroscopy with a strong emphasis on condensed-phase systems. It also examines optical processes in extended systems such as metals, semiconductors, and conducting polymers, and addresses the unique optical properties of nanoscale systems. Condensed-Phase Molecular Spectroscopy and Photophysics begins with an introduction to quantum mechanics that sets a solid foundation for understanding the text's subsequent topics, including: Electromagnetic radiation and radiation-matter interactions Molecular vibrations and infrared spectroscopy Electronic spectroscopy Photophysical processes and light scattering Nonlinear and pump-probe spectroscopies Electron transfer processes Each chapter contains problems ranging from simple to complex, enabling readers to gradually build their skills and problem-solving abilities. Written for upper-level undergraduate and graduate courses in physical and materials chemistry, this text is uniquely designed to equip readers to solve a broad array of current problems and challenges in chemistry.


Molecular Spectroscopy

Molecular Spectroscopy

Author: John M. Brown

Publisher: Oxford University Press on Demand

Published: 1998-01-01

Total Pages: 89

ISBN-13: 9780198557852

DOWNLOAD EBOOK

Molecular spectroscopy provides a straightforward introduction to the spectroscopy of diatomic molecules and is written at the level of intermediate undergraduate courses in physical chemistry and chemical physics. Following a general introduction to the subject, Chapter 2 lays out the essential quantum mechanical tools required to understand spectroscopy. Chapter 3 uses this quantum mechanical framework to establish the selection rules which govern spectroscopic transitions. Chapters 4-8 describe the various branches of spectroscopy covered by the book: rotational, rotational-vibrational, Raman, electronic, and photoelectron spectroscopy. Very little previous knowledge is assumed and mathematics is kept to a minimum. The author uses a range of examples to describe how spectra arise and what information on the structure of the molecules can be acquired from their study.


Atomic and Molecular Spectroscopy

Atomic and Molecular Spectroscopy

Author: Rita Kakkar

Publisher: Cambridge University Press

Published: 2015-05-14

Total Pages: 440

ISBN-13: 1316395391

DOWNLOAD EBOOK

Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.