Molecular Simulations and Biomembranes

Molecular Simulations and Biomembranes

Author: Mark S P Sansom

Publisher: Royal Society of Chemistry

Published: 2010-08-01

Total Pages: 331

ISBN-13: 1849732159

DOWNLOAD EBOOK

The need for information in the understanding of membrane systems has been caused by three things - an increase in computer power; methodological developments and the recent expansion in the number of researchers working on it worldwide. However, there has been no up-to-date book that covers the application of simulation methods to membrane systems directly and this book fills an important void in the market. It provides a much needed update on the current methods and applications as well as highlighting recent advances in the way computer simulation can be applied to the field of membranes and membrane proteins. The objectives are to show how simulation methods can provide an important contribution to the understanding of these systems. The scope of the book is such that it covers simulation of membranes and membrane proteins, but also covers the more recent methodological developments such as coarse-grained molecular dynamics and multiscale approaches in systems biology. Applications embrace a range of biological processes including ion channel and transport proteins. The book is wide ranging with broad coverage and a strong coupling to experimental results wherever possible, including colour illustrations to highlight particular aspects of molecular structure. With an internationally respected list of authors, its publication is timely and it will prove indispensable to a large scientific readership.


Characterization of Biological Membranes

Characterization of Biological Membranes

Author: Mu-Ping Nieh

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 716

ISBN-13: 3110544687

DOWNLOAD EBOOK

The study of membranes has become of high importance in the fields of biology, pharmaceutical chemistry and medicine, since much of what happens in a cell or in a virus involves biological membranes. The current book is an excellent introduction to the area, which explains how modern analytical methods can be applied to study biological membranes and membrane proteins and the bioprocesses they are involved to.


Physics of Biological Membranes

Physics of Biological Membranes

Author: Patricia Bassereau

Publisher: Springer

Published: 2018-12-30

Total Pages: 616

ISBN-13: 3030006301

DOWNLOAD EBOOK

This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.


Computational Biochemistry and Biophysics

Computational Biochemistry and Biophysics

Author: Oren M. Becker

Publisher: CRC Press

Published: 2001-02-09

Total Pages: 534

ISBN-13: 9780203903827

DOWNLOAD EBOOK

Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret b


Thermal Biophysics of Membranes

Thermal Biophysics of Membranes

Author: Thomas Heimburg

Publisher: John Wiley & Sons

Published: 2008-02-08

Total Pages: 378

ISBN-13: 3527611606

DOWNLOAD EBOOK

An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.


Biological Soft Matter

Biological Soft Matter

Author: Corinne Nardin

Publisher: John Wiley & Sons

Published: 2021-04-06

Total Pages: 288

ISBN-13: 3527810994

DOWNLOAD EBOOK

Biological Soft Matter Explore a comprehensive, one-stop reference on biological soft matter written and edited by leading voices in the field Biological Soft Matter: Fundamentals, Properties and Applications delivers a unique and indispensable compilation of up-to-date knowledge and material on biological soft matter. The book presents a thorough overview about biological soft matter, beginning with different substance classes, including proteins, nucleic acids, lipids, and polysaccharides. It goes on to describe a variety of superstructures and aggregated and how they are formed by self-assembly processes like protein folding or crystallization. The distinguished editors have included materials with a special emphasis on macromolecular assembly, including how it applies to lipid membranes, and proteins fibrillization. Biological Soft Matter is a crucial resource for anyone working in the field, compiling information about all important substance classes and their respective roles in forming superstructures. The book is ideal for beginners and experts alike and makes the perfect guide for chemists, physicists, and life scientists with an interest in the area. Readers will also benefit from the inclusion of: An introduction to DNA nano-engineering and DNA-driven nanoparticle assembly Explorations of polysaccharides and glycoproteins, engineered biopolymers, and engineered hydrogels Discussions of macromolecular assemblies, including liquid membranes and small molecule inhibitors for amyloid aggregation A treatment of inorganic nanomaterials as promoters and inhibitors of amyloid fibril formation An examination of a wide variety of natural and artificial polymers Perfect for materials scientists, biochemists, polymer chemists, and protein chemists, Biological Soft Matter: Fundamentals, Properties and Applications will also earn a place in the libraries of biophysicists and physical chemists seeking a one-stop reference summarizing the rapidly evolving topic of biological soft matter.


Molecular Simulations and Biomembranes

Molecular Simulations and Biomembranes

Author: Mark S. P. Sansom

Publisher: Royal Society of Chemistry

Published: 2010

Total Pages: 272

ISBN-13: 0854041893

DOWNLOAD EBOOK

The need for information in the understanding of membrane systems has been caused by three things - an increase in computer power; methodological developments and the recent expansion in the number of researchers working on it worldwide. However, there has been no up-to-date book that covers the application of simulation methods to membrane systems directly and this book fills an important void in the market. It provides a much needed update on the current methods and applications as well as highlighting recent advances in the way computer simulation can be applied to the field of membranes and membrane proteins. The objectives are to show how simulation methods can provide an important contribution to the understanding of these systems. The scope of the book is such that it covers simulation of membranes and membrane proteins, but also covers the more recent methodological developments such as coarse-grained molecular dynamics and multiscale approaches in systems biology. Applications embrace a range of biological processes including ion channel and transport proteins. The book is wide ranging with broad coverage and a strong coupling to experimental results wherever possible, including colour illustrations to highlight particular aspects of molecular structure. With an internationally respected list of authors, its publication is timely and it will prove indispensable to a large scientific readership.


Lipids in Photosynthesis: Structure, Function and Genetics

Lipids in Photosynthesis: Structure, Function and Genetics

Author: Paul-André Siegenthaler

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 328

ISBN-13: 0306480875

DOWNLOAD EBOOK

Lipids in Photosynthesis provides readers with a comprehensive view of the structure, function and genetics of lipids in plants, algae and bacteria, with special emphasis on the photosynthetic apparatus in thylakoid membranes. This volume includes the historical background of the field, as well as a full review of our current understanding of the structure and molecular organization of lipids and their role in the functions of photosynthetic membranes. The physical properties of membrane lipids in thylakoid membranes and their relationship to photosynthesis are also discussed. Other topics include the biosynthesis of glycerolipids and triglycerides; reconstitution of photosynthetic structures and activities with lipids; lipid-protein interactions in the import of proteins into chloroplasts; the development of thylakoid membranes as it relates to lipids; genetic engineering of the unsaturation of membrane glycerolipids, with a focus on the ability of the photosynthetic machinery to tolerate temperature stress; and the involvement of chloroplast lipids in the reactions of plants upon exposure to stress. This book is intended for a wide audience and should be of interest to advanced undergraduate and graduate students and to researchers active in the field, as well as to those scientists whose fields of specialization include the biochemistry, physiology, molecular biology, biophysics and biotechnology of membranes.


Protein Simulations

Protein Simulations

Author: Valerie Daggett

Publisher: Elsevier

Published: 2003-11-26

Total Pages: 477

ISBN-13: 0080493785

DOWNLOAD EBOOK

Protein Simulation focuses on predicting how protein will act in vivo. These studies use computer analysis, computer modeling, and statistical probability to predict protein function.* Force Fields* Ligand Binding* Protein Membrane Simulation* Enzyme Dynamics* Protein Folding and unfolding simulations


Modeling of Microscale Transport in Biological Processes

Modeling of Microscale Transport in Biological Processes

Author: Sid M. Becker

Publisher: Academic Press

Published: 2017-01-12

Total Pages: 0

ISBN-13: 9780128045954

DOWNLOAD EBOOK

Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.