Molecular Electronic Control Over Tunneling Charge Transfer Plasmons Modes

Molecular Electronic Control Over Tunneling Charge Transfer Plasmons Modes

Author: Shu Fen Tan

Publisher: Springer

Published: 2018-07-21

Total Pages: 142

ISBN-13: 9811088039

DOWNLOAD EBOOK

This thesis describes the controlled immobilization of molecules between two cuboidal metal nanoparticles by means of a self-assembly method to control the quantum plasmon resonances. It demonstrates that quantum-plasmonics is possible at length scales that are useful for real applications. Light can interact with certain metals and can be captured in the form of plasmons, which are collective, ultra-fast oscillations of electrons that can be manipulated at the nano-scale. Surface plasmons are considered as a promising phenomenon for potentially bridging the gap between fast-operating-speed optics and nano-scale electronics. Quantum tunneling has been predicted to occur across two closely separated plasmonic resonators at length scales (0.3 nm) that are not accessible using present-day nanofabrication techniques. Unlike top-down nanofabrication, the molecules between the closely-spaced metal nanoparticles could control the gap sizes down to sub-nanometer scales and act as the frequency controllers in the terahertz regime, providing a new control parameter in the fabrication of electrical circuits facilitated by quantum plasmon tunneling.


Introduction to Modern Biophysics

Introduction to Modern Biophysics

Author: Mohammad Ashrafuzzaman

Publisher: CRC Press

Published: 2023-12-15

Total Pages: 435

ISBN-13: 1003821634

DOWNLOAD EBOOK

This textbook provides an introduction to the fundamental and applied aspects of biophysics for advanced undergraduate and graduate students of physics, chemistry, and biology. The application of physics principles and techniques in exploring biological systems has long been a tradition in scientific research. Biological systems hold naturally inbuilt physical principles and processes which are popularly explored. Systematic discoveries help us understand the structures and functions of individual biomolecules, biomolecular systems, cells, organelles, tissues, and even the physiological systems of animals and plants. Utilizing a physics- based scientific understanding of biological systems to explore disease is at the forefront of applied scientific research. This textbook covers key breakthroughs in biophysics whilst looking ahead to future horizons and directions of research. It contains models based on both classical and quantum mechanical treatments of biological systems. It explores diseases related to physical alterations in biomolecular structures and organizations alongside drug discovery strategies. It also discusses the cutting- edge applications of nanotechnologies in manipulating nanoprocesses in biological systems. Key Features: • Presents an accessible introduction to how physics principles and techniques can be used to understand biological and biochemical systems. • Addresses natural processes, mutations, and their purposeful manipulation. • Lays the groundwork for vitally important natural scientific, technological, and medical advances. Mohammad Ashrafuzzaman, a biophysicist and condensed matter scientist, is passionate about investigating biological and biochemical processes utilizing physics principles and techniques. He is a professor of biophysics at King Saud University’s Biochemistry Department in the College of Science, Riyadh, Saudi Arabia; the co- founder of MDT Canada Inc., and the founder of Child Life Development Institute, Edmonton, Canada. He has authored Biophysics and Nanotechnology of Ion Channels, Nanoscale Biophysics of the Cell, and Membrane Biophysics. He has also published about 50 peer- reviewed articles and several patents, edited two books, and has been serving on the editorial boards of Elsevier and Bentham Science journals. Dr. Ashrafuzzaman has held research and academic ranks at Bangladesh University of Engineering & Technology, University of Neuchatel (Switzerland), Helsinki University of Technology (Finland), Weill Medical College of Cornell University (USA), and University of Alberta (Canada). During 2013– 2018 he also served as a Visiting Professor at the Departments of Oncology, and Medical Microbiology and Immunology, of the University of Alberta. Dr. Ashrafuzzaman earned his highest academic degree, Doctor of Science (D.Sc.) in condensed matter physics from the University of Neuchatel, Switzerland in 2004.


Recent Advances in Plasmonic Probes

Recent Advances in Plasmonic Probes

Author: Rajib Biswas

Publisher: Springer Nature

Published: 2022-06-21

Total Pages: 498

ISBN-13: 3030994910

DOWNLOAD EBOOK

This book gives a comprehensive overview of recent advancements in both theory and practical implementation of plasmonic probes. Encompassing multiple disciplines, the field of plasmonics provides a versatile and flexible platform for nanoscale sensing and imaging. Despite being a relatively young field, plasmonic probes have come a long way, with applications in chemical, biological, civil, and architectural fields as well as enabling many analytical schemes such as immunoassay, biomarkers, environmental indexing, and water quality sensing, to name but a few. The objective of the book is to present in-depth analysis of the theory and applications of novel probes based on plasmonics, with a broad selection of specially-invited chapters on the development, fabrication, functionalization, and implementation of plasmonic probes as well as their integration with current technologies and future outlook. This book is designed to cater to the needs of novice, seasoned researchers and practitioners in academia and industry, as well as medical and environmental fields.


Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications

Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications

Author: Pavel Krömer

Publisher: Springer

Published: 2017-09-23

Total Pages: 403

ISBN-13: 3319685279

DOWNLOAD EBOOK

This book highlights recent advances in intelligent data analysis, computational intelligence, signal processing, and all associated applications of artificial intelligence. It gathers papers presented at the ECC 2017, the Fourth Euro-China Conference on Intelligent Data Analysis and Applications. The aim of the ECC was to provide an internationally respected forum for scientific research in the broad areas of intelligent data analysis, computational intelligence, signal processing, and all associated applications of artificial intelligence (AI). The fourth installment of the ECC was jointly organized by the University of Málaga, Spain; the VŠB - Technical University of Ostrava, Czech Republic; and Fujian University of Technology, Fuzhou, China. The conference took place in Málaga, Spain on October 9–11, 2017.


21st Century Nanoscience

21st Century Nanoscience

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2022-01-18

Total Pages: 4153

ISBN-13: 1351260553

DOWNLOAD EBOOK

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.


Optical Response of Nanostructures

Optical Response of Nanostructures

Author: Kikuo Cho

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 192

ISBN-13: 3662051753

DOWNLOAD EBOOK

This book gives a theoretical description of linear and nonlinear optical responses of matter with special emphasis on the microscopic and ‘nonlocal’ nature of resonant response. It will have a tremendous influence on modern device techniques, as it deals with frontier research in response theory.


Plasmonics: Fundamentals and Applications

Plasmonics: Fundamentals and Applications

Author: Stefan Alexander Maier

Publisher: Springer Science & Business Media

Published: 2007-05-16

Total Pages: 234

ISBN-13: 0387378251

DOWNLOAD EBOOK

Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.


21st Century Nanoscience – A Handbook

21st Century Nanoscience – A Handbook

Author: Klaus D. Sattler

Publisher: CRC Press

Published: 2020-11-26

Total Pages: 465

ISBN-13: 1000702502

DOWNLOAD EBOOK

21st Century Nanoscience - A Handbook: Nanophotonics, Nanoelectronics, and Nanoplasmonics (Volume 6) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This sixth volume in a ten-volume set covers nanophotonics, nanoelectronics, and nanoplasmonics. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.


Quantum Plasmonics

Quantum Plasmonics

Author: Sergey I. Bozhevolnyi

Publisher: Springer

Published: 2016-11-26

Total Pages: 338

ISBN-13: 3319458205

DOWNLOAD EBOOK

This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.