Molecular Beacons explains working principle of molecular beacons, discusses their design, synthesis, purification and characterization, explores their thermodynamic and kinetic properties, and more importantly, reviews their in vivo and in vitro applications with the emphasis on the design and modification of molecular beacons for in vivo mRNA imaging applications. This book is designed to bring together in a single resource an organized and comprehensive view of molecular beacons and will be a valuable resource for academic, clinical and industrial scientists and graduate students who may consider exploring molecular beacons in their research or practice. Chaoyong James Yang is the Lu Jiaxi Professor of Chemistry at Xiamen University, China. Weihong Tan is a Distinguished Professor of Chemistry and Biomedical Engineering at Hunan University, China and also a University of Florida Distinguished Professor and V. T. and Louis Jackson Professor of Chemistry at the University of Florida, USA.
This laboratory guide represents a growing collection of tried, tested and optimized laboratory protocols for the isolation and characterization of eukaryotic RNA, with lesser emphasis on the characterization of prokaryotic transcripts. Collectively the chapters work together to embellish the RNA story, each presenting clear take-home lessons, liberally incorporating flow charts, tables and graphs to facilitate learning and assist in the planning and implementation phases of a project.RNA Methodologies, 3rd edition includes approximately 30% new material, including chapters on the more recent technologies of RNA interference including: RNAi; Microarrays; Bioinformatics. It also includes new sections on: new and improved RT-PCR techniques; innovative 5' and 3' RACE techniques; subtractive PCR methods; methods for improving cDNA synthesis.* Author is a well-recognized expert in the field of RNA experimentation and founded Exon-Intron, a well-known biotechnology educational workshop center * Includes classic and contemporary techniques * Incorporates flow charts, tables, and graphs to facilitate learning and assist in the planning phases of projects
This book covers a broad area of engineering research in translational medicine. Leaders in academic institutions around the world contributed focused chapters on a broad array of topics such as: cell and tissue engineering (6 chapters), genetic and protein engineering (10 chapters), nanoengineering (10 chapters), biomedical instrumentation (4 chapters), and theranostics and other novel approaches (4 chapters). Each chapter is a stand-alone review that summarizes the state-of-the-art of the specific research area. Engineering in Translational Medicine gives readers a comprehensive and in-depth overview of a broad array of related research areas, making this an excellent reference book for scientists and students both new to engineering/translational medicine and currently working in this area. The ability for engineering approaches to change biomedical research are increasing and having significant impact. Development of basic assays and their numerous applications are allowing for many new discoveries and should eventually impact human health. This book brings together many diverse yet related topics to give the reader a solid overview of many important areas that are not found together elsewhere. Dr. Weibo Cai has taken great care to select key research leaders of many sub-disciplines who have put together very detailed chapters that are easy to read yet highly rich in content. _______________ This book brings together many diverse yet related topics to give the reader a solid overview of many important areas that are not found together elsewhere. Dr. Weibo Cai has taken great care to select key research leaders of many sub-disciplines who have put together very detailed chapters that are easy to read yet highly rich in content. It is very exciting to see such a great set of chapters all together to allow one to have a key understanding of many different areas including cell, gene, protein, and nano engineering as well as the emerging field of theranostics. I am sure the readers will find this collection of important chapters helpful in their own research and understanding of how engineering has and will continue to play a critical role in biomedical research and clinical translation. Sanjiv Sam Gambhir M.D., Ph.D. Stanford University, USA Engineering in Translational Medicine is a landmark book bridging the fields of engineering and medicine with a focus on translational technologies and methods. In a single, well-coordinated volume, this book brings together contributions from a strong and international scientific cast, broadly covering the topics. The book captures the tremendous opportunities made possible by recent developments in bioengineering, and highlights the potential impact of these advances across a broad spectrum of pressing health care needs. The book can equally serve as a text for graduate level courses, a reference source, a book to be dipped into for pleasure by those working within the field, or a cover-to-cover read for those wanting a comprehensive, yet readable introduction to the current state of engineering advances and how they are impacting translational medicine. Simon R. Cherry, Ph.D. University of California, Davis, USA
MicroRNAs (miRNAs), endogenous noncoding regulatory mRNAs of - nucleotides, have rapidly emerged as the central players in gene expression regulation. Owing to their ever-increasing implications in the control of various biological and pathological processes, miRNAs have now been considered novel biomarkers of various human diseases including, cancer, viral disease, cardiov- cular disorders, metabolic disturbances, etc. Particular expression pro?les have been associated with particular pathological states. Expression pro?ling of miR- NAs have therefore become extremely important not only for fundamentalists but also for clinicians. However, the methodologies used for detecting protein-coding mRNAs cannot be directly applied to miRNAs because of their small size. Over the past years, researchers have made great efforts to developing techniques suitable for miRNA detection and quanti?cation; a wide spectrum of creative and inno- tive techniques (more than 30 different methods) have been invented and validated. It has come to the time now to summarize these methods and present them in an orderly manner for better understanding and utilization of these methods to miRNA research and applications. In particular, the development of methods for quantifying circulating miRNAs opens up a fascinating opportunity for realizing miRNA as diagnostic and prognostic biomarkers of human disease. A book on this subject may help boosting up the passion of researchers to further improve the existing techniques and develop more new methods to ?t to new application needs. These considerations prompted us and urged us to undertake the work: writing a book focusing on miRNA expression detection methods.
A comprehensive collection of readily reproducible techniques for the difficult process of single nucleotide polymorphisms (SNP) discovery and genotyping. These cutting-edge protocols for mutation/SNP detection utilize denaturing high-performance liquid chromatography (dHPLC), single-strand conformation polymorphism (SSCP), conformation-sensitive gel electrophoresis (CSGE), chemical cleavage, and direct sequencing. Equally powerful and up-to-date methods are given for genotyping SNPs, including molecular beacons, the Taqman assay, single-base extension approaches, pyrosequencing, ligation, the Invader assay, and primer extension with mass spectrometry detection.
This book offers a comprehensive selection of essays by leading experts, which covers all aspects of modern imaging, from its application and up-scaling to its development. The chapter content ranges from the basics to the most complex overview of method and protocols. There is ample practical and detailed "how-to" content on important, but rarely addressed topics. This first edition features all-colour-plate chapters, licensed software and a unique, continuously updated website forum.
The need for the development of techniques based on the characteristics of the viral proteins and genomic nucleic acids was realized in order to detect, identify, differentiate and quantify viruses in the infected plants/planting materials with or without symptoms of infection. Immunoassays have been successfully applied for the detection of viruses in crop and weed host plant species as well as in the vectors. Nucleic acid-based techniques have been demonstrated to be the most reliable and sensitive tests for detection, identification and differentiation of viruses and viroids present in plants and planting materials.. Inclusion of numerous protocols in appropriate chapters as appendix is a unique feature of this volume.
This book shows how nanofabrication techniques and nanomaterials can be used to customize packaging for nano devices with applications to electronics, photonics, biological and biomedical research and products. It covers topics such as bio sensing electronics, bio device packaging, MEMS for bio devices and much more, including: Offers a comprehensive overview of nano and bio packaging and their materials based on their chemical and physical sciences and mechanical, electrical and material engineering perspectives; Discusses nano materials as power energy sources, computational analyses of nano materials including molecular dynamic (MD) simulations and DFT calculations; Analyzes nanotubes, superhydrophobic self-clean Lotus surfaces; Covers nano chemistry for bio sensor/bio material device packaging. This second edition includes new chapters on soft materials-enabled packaging for stretchable and wearable electronics, state of the art miniaturization for active implantable medical devices, recent LED packaging and progress, nanomaterials for recent energy storage devices such as lithium ion batteries and supercapacitors and their packaging. Nano- Bio- Electronic, Photonic and MEMS Packaging is the ideal book for all biomedical engineers, industrial electronics packaging engineers, and those engaged in bio nanotechnology applications research.
"Molecular Imaging: Fundamentals and Applications" is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book. Jie Tian is a professor at the Institute of Automation, Chinese Academy of Sciences, China.