This title provides a brief but accurate summary of all the basic ideas, theories, methods, and conspicuous results of structure analysis and molecular modelling of the condensed phases of organic compounds.
The word OC nucleation, OCO derived from OC nuclear family, OCO refers to the concept of the progenitor, or the mother and the father of any family. Only in the last few centuries have physicists OC borrowedOCO the word, and more recently, biologists for Theodor Schwann''s cell theory. Most recently, the term has come into use in atomic theory, spectroscopy, and radioactivity, as well as in the fields of atomic bombs, fission, and fusion. Nucleation as a physicochemical process is followed by two poorly understood phenomena OCo aggregation and crystallization - which underlie disorders like Alzheimer''s and OC mad-cowOCO disease (aggregation of amyloid plaque), cardiovascular diseases (deposition in coronary vessels of cholesterol and lipids), and the appearance of crystals under physiological conditions (gout, silicoses, and liver or kidney stones).Written by leading scientists in the field, including one Nobel Laureate, this book provides a unique perspective between the physical and chemical sciences on the one hand, and the biological and medical sciences on the other, and should be of considerable value to scientists, physicians, students, and the interested lay publi
Given the enormous interest in surface phenomena in areas ranging from materials science to applications in life science, this volume is a very timely addition to the literature. Emphasis is on surfactants mediating interfacial and molecular aggregation phenomena, and the following topics are reviewed in particular: dissolution rates, equilibrium adsorption, mixing rules, and spreading on a solid surface of surfactants, as well as the role of surfactants in mediating a range of processes, such as the fabrication of various nanomaterials. Written and edited by leading experts, this volume is dedicated to Professor Dinesh O. Shah, one of the pioneers in this field.
Supramolecular aggregation—driven by weak non-covalent interactions, such as van der Waals, π–π interactions, hydrogen bonding, and electrostatic—has been utilized to build sensing platforms with improved selectivity and sensitivity. Supramolecular aggregates, owing to cooperative interactions, higher sensitivity and selectivity, relatively weak and dynamic non-covalent interactions, and environmental adaptation, have achieved better sensing performance than that of molecular sensory systems that rely on sensors with delicate structures. Aggregation of Luminophores in Supramolecular System: From Mechanisms to Applications describes recent advances in supramolecular chemistry, in which the luminophores are almost non-luminescent in the molecular state, but become highly emissive in the aggregate state. These advances bring new opportunities and challenges for the development of supramolecular chemistry. The intermolecular non-covalent interactions have been considered to be the main driving forces for fabricating supramolecular systems with aggregating luminophores and have an important influence on the luminescence properties of the probes. Based on these unique properties, luminescent supramolecular aggregates have greatly promoted the development of novel materials for applications as sensors, bio-imaging agents, organic electronic devices, and in the field of drug delivery. Features: Discussion of fundamental and interdisciplinary aspects of the aggregation in supramolecular systems. Narration of intermolecular interactions and the photophysical phenomenon of aggregation in supramolecular systems. Comparative discussion on recent developments in aggregation-induced quenching (AIQ) and aggregation-induced emission (AIE), and drawbacks of AIQ. Description of the technological applications of aggregation as biological sensors, chemical sensors, organic electronic materials, and in the field of drug delivery. A convenient format for checking formulas and definitions. This book surveys highlights of the progress made in the field of the aggregation of luminophores in supramolecular chemistry. It is hoped that the work will form a foundation (and indeed a motivation) for new workers in the area, as well as also being useful to experienced supramolecular chemists. It may also aid workers in the biological area to see Nature’s aggregation in a new light. Further, the approach employed has been designed to provide readable background material for use with graduates, senior undergraduates, research professionals, and industries.
This book compiles the accomplishments of the recent research project on photochemistry “Photosynergetics”, supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, aiming to develop and elucidate new methods and molecules leading to advanced utilization of photo-energies. Topics include photochemical responses induced by multiple excitation, multiphoton absorption, strong modulation of electronic states, developments of new photofunctional molecules, mesoscopic actuations induced by photoexcitation, and novel photoresponses in molecules and molecular assemblies. The authors stress that these approaches based on the synergetic interaction among many photons and many molecules enable the expansion of the accessibility to specific electronic states. As well, they explain how the development of reaction sequences and molecules/molecular assemblies ensure “additivity” and “integration” without loss of the photon energy, leading to new photoresponsive assemblies in meso- and macroscopic scales.
The first volume of the ultimate reference on the science and applications of aggregation-induced emission The Handbook of Aggregation-Induced Emission explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission. In this first volume of three, the editors survey the subject of aggregation-induced emission with a focus on the fundamentals of various branches of the discipline, such as crystallization-induced emission, room temperature phosphorescence, aggregation-induced delayed fluorescence, and more. This book covers the new properties of materials endowed by molecular aggregates. It also includes: A thorough introduction to the mechanistic understanding of the importance of molecular motion to aggregation-induced emission An exploration of the aggregation-induced emission mechanism at the molecular level Practical discussions of aggregation-induced emission from the restriction of double bond rotation at the excited state, and clusterization-triggered emission Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.
Functional organic and organometallic polymers and materials have gained much attention as versatile materials for energy interconversions and optoelectronic/photonic applications, including electrical energy generation in photovoltaic cells and light generation in organic light-emitting diodes, as they offer a low cost, light weight and simple option for device fabrication. Molecular Design and Applications of Photofunctional Polymers and Materials, presents a critical perspective of the current field, with emphasis on fundamental concepts and current applications in optoelectronics, electronics and nanotechnology. The book also covers photochemically degradable polymers, electrochromic and photochromic materials, biosensing and bioimaging materials, and low- and high-refractive index materials. With contributions from leading experts in the field, this timely book will provide a valuable contribution to the community enabling new synthetic methods to be developed to produce new materials with specific functional roles.
The second volume of the ultimate reference on the science and applications of aggregation-induced emission The Handbook of Aggregation-Induced Emission explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission. In Volume 2: Typical AIEgens Design, the editors address the design and synthesis of typical AIEgens that have made significant contributions to aggregation-induced emission research. Recent advances in the development of aggregation-induced emission systems are discussed and the book covers novel aggregation-induced emission systems in small molecule organogels, polymersomes, metal-organic coordination complexes and metal nanoclusters. Readers will also discover: A thorough introduction to the synthesis and applications of tetraphenylpyrazine-based AIEgens, AIEgens based on 9,10-distyrylanthracene , and the Salicylaldehyde Schiff base Practical discussions of aggregation-induced emission from the sixth main group and fluorescence detection of dynamic aggregation processes using AIEgens Coverage of cyclic triimidazole derivatives and the synthesis of multi-phenyl-substituted pyrrole based materials and their applications Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.
Aggregation-Induced Emission (AIE) is a novel photophysical phenomenon which offers a new platform for researchers to look into the light-emitting processes from luminogen aggregates, from which useful information on structure–property relationships may be collected and mechanistic insights may be gained. The discovery of the AIE effect opens a new avenue for the development of new luminogen materials in the aggregate or solid state. By enabling light emission in the practically useful solid state, AIE has the potential to expand significantly the technological applications of luminescent materials. Aggregation-Induced Emission: Fundamentals is the first book to explore the fundamental issues of AIE, including the design, synthesis, and photophysical behavior of AIE-active molecules and polymers. The control of the morphological structures of the aggregates of AIE-active materials, and the experimental investigation and theoretical understanding of the AIE mechanism, are also covered in this volume. Topics covered include: AIE in group 14 metalloles AIE in organic ion pairs Red light-emitting AIE materials Supramolecular structure and AIE AIE-active polymers Enhanced emission by restriction of molecular rotation Crystallization-induced emission enhancement Theoretical understanding of AIE phenomena This book is essential reading for scientists and engineers who are designing optoelectronic materials and biomedical sensors, and will also be of interest to academic researchers in materials science and physical and synthetic organic chemistry, as well as physicists and biological chemists.
This book provides an overview of the design, synthesis, and characterization of different photoactive hybrid organic-inorganic materials, based on the combination of mainly organic molecules and inorganic nanostructures, tackling their uses in different scientific fields from photonics to biomedicine. There are many examples extensively describing how the confinement of organic compounds (i.e. chromophores, photochromic molecules or photoreactants), or other photoactive compounds (i.e.metal clusters) into several microporous systems can modulate the photophysical properties and photochemical reactions leading to interesting applications. Among (ordered)-hosts, different systems of diverse nature are widely used, such as the, the 1D- or 3D- channels of zeolitic frameworks, interlayer space of 2D-clays, the organic nanospace of curcubituril and cyclodextrins or the organo-inorganic porous crystalline MOFs systems. This volume highlights the advances of these photoactive materials and aims to be an inspiration for researchers working in materials science and photochemistry, including chemists, material engineers, physicists, biologists, and medical researchers.