Moduli Spaces of Polynomials in Two Variables

Moduli Spaces of Polynomials in Two Variables

Author: Javier Fernández de Bobadilla

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 154

ISBN-13: 0821835939

DOWNLOAD EBOOK

Investigates the geometry of the orbit space. This book associates a graph with each polynomial in two variables that encodes part of its geometric properties at infinity. It also defines a partition of $\mathbb{C} x, y]$ imposing that the polynomials in the same stratum are the polynomials with a fixed associated graph


Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor $D$-Modules, Part 1

Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor $D$-Modules, Part 1

Author: Takuro Mochizuki

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 344

ISBN-13: 082183942X

DOWNLOAD EBOOK

The author studies the asymptotic behaviour of tame harmonic bundles. First he proves a local freeness of the prolongment of deformed holomorphic bundle by an increasing order. Then he obtains the polarized mixed twistor structure from the data on the divisors. As one of the applications, he obtains the norm estimate of holomorphic or flat sections by weight filtrations of the monodromies. As another application, the author establishes the correspondence of semisimple regular holonomic $D$-modules and polarizable pure imaginary pure twistor $D$-modules through tame pure imaginary harmonic bundles, which is a conjecture of C. Sabbah. Then the regular holonomic version of M. Kashiwara's conjecture follows from the results of Sabbah and the author.


Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration

Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration

Author: Alfonso Zamora Saiz

Publisher: Springer Nature

Published: 2021-03-24

Total Pages: 127

ISBN-13: 3030678296

DOWNLOAD EBOOK

This book introduces key topics on Geometric Invariant Theory, a technique to obtaining quotients in algebraic geometry with a good set of properties, through various examples. It starts from the classical Hilbert classification of binary forms, advancing to the construction of the moduli space of semistable holomorphic vector bundles, and to Hitchin’s theory on Higgs bundles. The relationship between the notion of stability between algebraic, differential and symplectic geometry settings is also covered. Unstable objects in moduli problems -- a result of the construction of moduli spaces -- get specific attention in this work. The notion of the Harder-Narasimhan filtration as a tool to handle them, and its relationship with GIT quotients, provide instigating new calculations in several problems. Applications include a survey of research results on correspondences between Harder-Narasimhan filtrations with the GIT picture and stratifications of the moduli space of Higgs bundles. Graduate students and researchers who want to approach Geometric Invariant Theory in moduli constructions can greatly benefit from this reading, whose key prerequisites are general courses on algebraic geometry and differential geometry.


Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness

Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness

Author: Lee Klingler

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 187

ISBN-13: 0821837389

DOWNLOAD EBOOK

This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)


Entropy Bounds and Isoperimetry

Entropy Bounds and Isoperimetry

Author: Serguei Germanovich Bobkov

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 88

ISBN-13: 082183858X

DOWNLOAD EBOOK

In these memoirs Bobkov and Zegarlinski describe interesting developments in infinite dimensional analysis that moved it away from experimental science. Here they also describe Poincar -type inequalities, entropy and Orlicz spaces, LSq and Hardy-type inequalities on the line, probability measures satisfying LSq inequalities on the real line, expo


Flat Level Set Regularity of $p$-Laplace Phase Transitions

Flat Level Set Regularity of $p$-Laplace Phase Transitions

Author: Enrico Valdinoci

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 158

ISBN-13: 0821839101

DOWNLOAD EBOOK

We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.


A Generating Function Approach to the Enumeration of Matrices in Classical Groups over Finite Fields

A Generating Function Approach to the Enumeration of Matrices in Classical Groups over Finite Fields

Author: Jason Fulman

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 104

ISBN-13: 0821837060

DOWNLOAD EBOOK

Generating function techniques are used to study the probability that an element of a classical group defined over a finite field is separable, cyclic, semisimple or regular. The limits of these probabilities as the dimension tends to infinity are calculated in all cases, and exponential convergence to the limit is proved. These results complement and extend earlier results of the authors, G. E. Wall, and Guralnick & Lubeck.


The Second Duals of Beurling Algebras

The Second Duals of Beurling Algebras

Author: Harold G. Dales

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 206

ISBN-13: 0821837745

DOWNLOAD EBOOK

Let $A$ be a Banach algebra, with second dual space $A""$. We propose to study the space $A""$ as a Banach algebra. There are two Banach algebra products on $A""$, denoted by $\,\Box\,$ and $\,\Diamond\,$. The Banach algebra $A$ is Arens regular if the two products $\Box$ and $\Diamond$ coincide on $A""$.


Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations

Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations

Author: Greg Hjorth

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 126

ISBN-13: 0821837710

DOWNLOAD EBOOK

Contributes to the theory of Borel equivalence relations, considered up to Borel reducibility, and measures preserving group actions considered up to orbit equivalence. This title catalogs the actions of products of the free group and obtains additional rigidity theorems and relative ergodicity results in this context.