Self-Healing Polymers

Self-Healing Polymers

Author: Wolfgang H. Binder

Publisher: John Wiley & Sons

Published: 2013-03-29

Total Pages: 638

ISBN-13: 3527670203

DOWNLOAD EBOOK

Self-healing is a well-known phenomenon in nature: a broken bone merges after some time and if skin is damaged, the wound will stop bleeding and heals again. This concept can be mimicked in order to create polymeric materials with the ability to regenerate after they have suffered degradation or wear. Already realized applications are used in aerospace engineering, and current research in this fascinating field shows how different self-healing mechanisms proven successful by nature can be adapted to produce even more versatile materials. The book combines the knowledge of an international panel of experts in the field and provides the reader with chemical and physical concepts for self-healing polymers, including aspects of biomimetic processes of healing in nature. It shows how to design self-healing polymers and explains the dynamics in these systems. Different self-healing concepts such as encapsulated systems and supramolecular systems are detailed. Chapters on analysis and friction detection in self-healing polymers and on applications round off the book.


Aryl Diazonium Salts

Aryl Diazonium Salts

Author: Mohamed Mehdi Chehimi

Publisher: John Wiley & Sons

Published: 2012-07-10

Total Pages: 359

ISBN-13: 3527329986

DOWNLOAD EBOOK

Diazonium compounds are employed as a new class of coupling agents to link polymers, biomacromolecules, and other species (e. g. metallic nanoparticles) to the surface of materials. The resulting high performance materials show improved chemical and physical properties and find widespread applications. The advantage of aryl diazonium salts compared to other surface modifiers lies in their ease of preparation, rapid (electro)reduction, large choice of reactive functional groups, and strong aryl-surface covalent bonding. This unique book summarizes the current knowledge of the surface and interface chemistry of aryl diazonium salts. It covers fundamental aspects of diazonium chemistry together with theoretical calculations of surface-molecule bonding, analytical methods used for the characterization of aryl layers, as well as important applications in the field of electrochemistry, nanotechnology, biosensors, polymer coatings and materials science. Furthermore, information on other surface modifiers (amines, silanes, hydrazines, iodonium salts) is included. This collection of 14 self-contained chapters constitutes a valuable book for PhD students, academics and industrial researchers working on this hot topic.


Polymer-based Nanocomposites for Energy and Environmental Applications

Polymer-based Nanocomposites for Energy and Environmental Applications

Author: Mohammad Jawaid

Publisher: Woodhead Publishing

Published: 2018-01-03

Total Pages: 702

ISBN-13: 0081019114

DOWNLOAD EBOOK

Polymer-Based Nanocomposites for Energy and Environmental Applications provides a comprehensive and updated review of major innovations in the field of polymer-based nanocomposites for energy and environmental applications. It covers properties and applications, including the synthesis of polymer based nanocomposites from different sources and tactics on the efficacy and major challenges associated with successful scale-up fabrication. The chapters provide cutting-edge, up-to-date research findings on the use of polymer based nanocomposites in energy and environmental applications, while also detailing how to achieve material’s characteristics and significant enhancements in physical, chemical, mechanical and thermal properties. It is an essential reference for future research in polymer based nanocomposites as topics such as sustainable, recyclable and eco-friendly methods for highly innovative and applied materials are current topics of importance. Covers a wide range of research on polymer based nanocomposites Provides updates on the most relevant polymer based nanocomposites and their prodigious potential in the fields of energy and the environment Demonstrates systematic approaches and investigations from the design, synthesis, characterization and applications of polymer based nanocomposites Presents a useful reference and technical guide for university academics and postgraduate students (Masters and Ph.D.)


Encyclopedia of Polymer Applications, 3 Volume Set

Encyclopedia of Polymer Applications, 3 Volume Set

Author: Munmaya Mishra

Publisher: CRC Press

Published: 2018-12-17

Total Pages: 2954

ISBN-13: 1351019414

DOWNLOAD EBOOK

Undoubtedly the applications of polymers are rapidly evolving. Technology is continually changing and quickly advancing as polymers are needed to solve a variety of day-to-day challenges leading to improvements in quality of life. The Encyclopedia of Polymer Applications presents state-of-the-art research and development on the applications of polymers. This groundbreaking work provides important overviews to help stimulate further advancements in all areas of polymers. This comprehensive multi-volume reference includes articles contributed from a diverse and global team of renowned researchers. It offers a broad-based perspective on a multitude of topics in a variety of applications, as well as detailed research information, figures, tables, illustrations, and references. The encyclopedia provides introductions, classifications, properties, selection, types, technologies, shelf-life, recycling, testing and applications for each of the entries where applicable. It features critical content for both novices and experts including, engineers, scientists (polymer scientists, materials scientists, biomedical engineers, macromolecular chemists), researchers, and students, as well as interested readers in academia, industry, and research institutions.


Inorganic-Whisker-Reinforced Polymer Composites

Inorganic-Whisker-Reinforced Polymer Composites

Author: Qiuju Sun

Publisher: CRC Press

Published: 2015-08-18

Total Pages: 310

ISBN-13: 1498700683

DOWNLOAD EBOOK

Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer


Optimization of Polymer Nanocomposite Properties

Optimization of Polymer Nanocomposite Properties

Author: Vikas Mittal

Publisher: John Wiley & Sons

Published: 2009-12-09

Total Pages: 440

ISBN-13: 9783527629282

DOWNLOAD EBOOK

A one-stop resource for researchers and developers alike, this book covers a plethora of nanocomposite properties and their enhancement mechanisms. With contributors from industry as well as academia, each chapter elucidates in detail the mechanisms to achieve a certain functionality of the polymer nanocomposite, such as improved biodegradability, increased chemical resistance and tribological performance. Special emphasis is laid on the interdependence of the factors that affect the nanocomposite properties such that readers obtain the information necessary to synthesize the polymer materials according to the requirements of their respective applications.


Thermal Analysis of Polymeric Materials

Thermal Analysis of Polymeric Materials

Author: Krzysztof Pielichowski

Publisher: John Wiley & Sons

Published: 2022-06-01

Total Pages: 878

ISBN-13: 3527828702

DOWNLOAD EBOOK

An all-in-one reference work covering the essential principles and techniques on thermal behavior and response of polymeric materials This book delivers a detailed understanding of the thermal behavior of polymeric materials evaluated by thermal analysis methods. It covers the most widely applied principles which are used in method development to substantiate what happens upon heating of polymers. It also reviews the key application areas of polymers in materials science. Edited by two experts in the field, the book covers a wide range of specific topics within the aforementioned categories of discussion, such as: Crucial thermal phenomena - glass transition, crystallization behavior and curing kinetics Polymeric materials that have gained considerable interest over the last decade The latest advancements in techniques related to the field, such as modulated temperature DSC and fast scanning calorimetry The recent advances in hyphenated techniques and their applications Polymer chemists, chemical engineers, materials scientists, and process engineers can use this comprehensive reference work to gain clarity on the topics discussed within and learn how to harness them in practical applications across a wide range of disciplines.


Effect of Negative Thermal Expansion Material Cubic ZrW2O8 on Polycarbonate Composites

Effect of Negative Thermal Expansion Material Cubic ZrW2O8 on Polycarbonate Composites

Author: Xiaodong Gao

Publisher:

Published: 2015

Total Pages: 166

ISBN-13:

DOWNLOAD EBOOK

Research on control of thermal expansion of polymers has attracted significant attention, since polymers exhibit excellent mechanical and electronic properties, but suffer from high thermal expansion due to the thermal motion of their long molecular chains. Such problems can be addressed through formation of composites that contain an inorganic filler material. Filler materials reduce the thermal expansion of polymers through restriction of polymer chain motion. One particular area of interest is the introduction of negative thermal expansion (NTE) materials into polymer composites. The NTE property is expected to have an additional effect on the reduction of the coefficient of thermal expansion (CTE) of the composites. Several papers have demonstrated successful reduction of the CTE of polymer composites using cubic ZrW2O8, however, it is still unclear how much of this effect is caused by the NTE behavior, and how much is due to chain stiffening. To address whether the use of expensive NTE materials is justified, this project is designed to investigate the exact effects of NTE and chain stiffening on the reduction of thermal expansion of polymer composites. This objective was achieved through the preparation and testing of two sets of composites containing isomorphic particles with opposite thermal expansion (ZrW2O8 and ZrW2O7(OH)2¿2H2O),which possess identical chain stiffening effects. The first goal of the project was to synthesize two different particles that have identical morphology but opposite thermal expansion, with cubic ZrW2O8 as the NTE material of choice. The initial idea was to use a-Al2O3 (corundum), which has a known positive CTE value, as the second material. This phase can be obtained through heat treatment of AlOOH at about 1100 °C. The synthesis of AlOOH with controlled morphologies based on choice of synthetic conditions has been reported. Attempts on the synthesis of AlOOH were made through two different routes. Neither of them delivered particles with similar size as cubic ZrW2O8. Additionally, it was found that the heat treatment at high temperature caused sintering of the particles, resulting in the formation of large particles. To circumvent this problem, the precursor of ZrW2O8, ZrW2O7(OH)2¿2H2O, was used as the counterpart for the comparison, since the topotactic transformation between the two phases results in unchanged morphology, giving rod-like shape for both materials. The synthesis of ZrW2O7(OH)2¿2H2O was optimized to prepare particles with small size, high crystallinity, and good resistance to hydration after converting to the cubic NTE phase. The effects of acid concentration and reaction time were explored. The products were examined by powder X-ray diffraction (PXRD) and scanning electron microscopy, and the hydration rates were also estimated based on the PXRD patterns. Final reaction conditions were chosen as 6 M HCl at 230 °C for 7 d. The coefficient of thermal expansion was determined for ZrW2O7(OH)2¿2H2O using Pawley refinements of variable temperature PXRD data, and values of ¿a = 11 × 10-6 ± 1 × 10-6 K-1 and ¿c = 2.6 × 10-6 ± 0.3 × 10-6 K-1, respectively, were found. Rietveld refinements were carried out on PXRD patterns of both types of particles mixed with silicon to estimate their amorphous content. Results indicated that both particles were close to fully crystalline. To improve the interaction between the particles and polymer, surface modification was carried out via in-situ polymerization in the presence of the particles using triphosgene and bisphenol A as monomers. Soxhlet extraction was used to purify the recovered particles. Thermogravimetric analysis was used to determine the surface coverage of the products and the presence of unbound polymer, and the required time for extraction was revealed to be 96 h based on the TGA results. Infrared spectroscopy was also used to examine the modified particles, which confirmed the presence of surface bound oligomers. Optimization of synthetic conditions, including monomers ratio, reaction time and amount of particles, was carried out to obtain the highest possible coverage. It was found that the optimum ratio for the monomers is between 2.2 : 1 and 1.3 : 1. Leveling off was observed for the surface coverage after 21 h of reaction time. Smaller amounts of particles gave higher surface coverages, but resulted in very low quantities of recovered particles due to losses during recovery steps. To recover more particles from a single batch reaction, the particles were subjected to two consecutive modification steps, resulting in both high coverage and high recovered amounts. The precursor particles could be modified under the same optimum conditions found for NTE particles. The interaction between the particles and polymer was found to be improved after the modification. Solution casting was used to prepare the composite films. A custom made glass vessel was created to provide an inert atmosphere with reduced pressure. This can lower the moisture level and increase the evaporation rate of the casting solvent, which can prevent moisture deposition and crystallization of the polymer. The interaction between the two phases was further enhanced through reprecipitation blending. Under optimized conditions, composite films loaded with bth types of particles were prepared with weight loadings ranging from 2 wt% to 25 wt%. Films with loadings above 12 wt% showed agglomeration on optical images. The homogeneity of the particle dispersion within the films was still acceptable based on combustion analysis. Several properties of the composites were measured, including tensile properties, thermal stability, glass transition temperature and coefficient of thermal expansion. All films without agglomeration showed enhance thermal stability. On the other hand, most films with agglomeration exhibited slightly lower thermal stability. Similar trends were seen for the stress and strain at yield for both types of composites. The composites with lower thermal stability showed lower stress and strain at yield than pristine PC films, whereas the rest showed similar values for these two properties. The Young’s modulus of both types of composite films was found to slightly increase with the addition of the filler particles. All composites exhibited similar values as pristine PC. However, the local structure of the two types of the composites was revealed to be different by dynamic mechanical analysis. The films loaded with the precursor particles exhibited earlier softening than pristine PC, while a delay in softening was found for the ones loaded with NTE particles. The coefficient of thermal expansion (CTE) was measured for the film samples at the University of Mulhouse. This instrument produced faulty numbers that required corrections for instrument contributions. The correction for instrument contributions was checked by comparing the corrected values of three selected film samples to values obtained through analysis at West Kentucky University. The composites blended with NTE particles showed consistently lower CTE values than pristine PC and decreased with increased particle loading, whereas the values of the other set of composites showed no clear trends. Overall, considering the errors associated with the CTE values, the difference caused by the NTE behavior of the particles may not be very significant. Additional samples with higher loadings need to be tested to obtain a clearer picture, and data should be collected on well calibrated instruments to reduce errors.