Modern Power Systems Control and Operation

Modern Power Systems Control and Operation

Author: Atif S. Debs

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 376

ISBN-13: 1461310733

DOWNLOAD EBOOK

Initial material for this book was developed over a period of several years through the introduction in the mid-seventies of a graduate-level course en titled, "Control and Operation of Interconnected Power Systems," at the Georgia Institute of Technology. Subsequent involvement with the utility industry and in teaching continuing education courses on modern power sys tem control and operation contributed to the complimentary treatment of the dynamic aspects of this overall topic. In effect, we have evolved a textbook that provides a thorough under standing of fudamentals as needed by a graduate student with a prior back ground in power systems analysis at the undergraduate level, and in system theory concepts normally provided at the beginning of the graduate level in electrical engineering. It is also designed to provide the depth needed both by the serious graduate student and the power industry engineer involved in the activities of energy control centers and short-term operations planning. As explained in Chapter 2, the entire book can be covered in a two quarter course sequence. The bulk of the material may be covered in one semester. For a two-semester offering, we recommend that students be in volved in some project work to further their depth of understanding. Utility and consulting industry engineers should concentrate on the more advanced concepts and developments usually available at the latter half of each chap ter.


Energy Storage for Modern Power System Operations

Energy Storage for Modern Power System Operations

Author: Sandeep Dhundhara

Publisher: John Wiley & Sons

Published: 2021-10-19

Total Pages: 354

ISBN-13: 111976033X

DOWNLOAD EBOOK

ENERGY STORAGE for MODERN POWER SYSTEM OPERATIONS Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges for modern power systems for engineers, researchers, academicians, industry professionals, consultants, and designers. Energy storage systems have been recognized as the key elements in modern power systems, where they are able to provide primary and secondary frequency controls, voltage regulation, power quality improvement, stability enhancement, reserve service, peak shaving, and so on. Particularly, deployment of energy storage systems in a distributed manner will contribute greatly in the development of smart grids and providing promising solutions for the above issues. The main challenges will be the adoption of new techniques and strategies for the optimal planning, control, monitoring and management of modern power systems with the wide installation of distributed energy storage systems. Thus, the aim of this book is to illustrate the potential of energy storage systems in different applications of modern power systems, with a view toward illuminating recent advances and research trends in storage technologies. This exciting new volume covers the recent advancements and applications of different energy storage technologies that are useful to engineers, scientists, and students in the discipline of electrical engineering. Suitable for the engineers at power companies and energy storage consultants working in the energy storage field, this book offers a cross-disciplinary look across electrical, mechanical, chemical and renewable engineering aspects of energy storage. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Electrical engineers and other designers, engineers, and scientists working in energy storage


Uncertainties in Modern Power Systems

Uncertainties in Modern Power Systems

Author: Ahmed F. Zobaa

Publisher: Academic Press

Published: 2020-10-26

Total Pages: 718

ISBN-13: 0128208937

DOWNLOAD EBOOK

Uncertainties in Modern Power Systems combines several aspects of uncertainty management in power systems at the planning and operation stages within an integrated framework. This book provides the state-of-the-art in electric network planning, including time-scales, reliability, quality, optimal allocation of compensators and distributed generators, mathematical formulation, and search algorithms. The book introduces innovative research outcomes, programs, algorithms, and approaches that consolidate the present status and future opportunities and challenges of power systems. The book also offers a comprehensive description of the overall process in terms of understanding, creating, data gathering, and managing complex electrical engineering applications with uncertainties. This reference is useful for researchers, engineers, and operators in power distribution systems. - Includes innovative research outcomes, programs, algorithms, and approaches that consolidate current status and future of modern power systems - Discusses how uncertainties will impact on the performance of power systems - Offers solutions to significant challenges in power systems planning to achieve the best operational performance of the different electric power sectors


Converter-Based Dynamics and Control of Modern Power Systems

Converter-Based Dynamics and Control of Modern Power Systems

Author: Antonello Monti

Publisher: Academic Press

Published: 2020-10-22

Total Pages: 376

ISBN-13: 0128184922

DOWNLOAD EBOOK

Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. - Includes theory on the emerging topic of electrical grids based on power electronics - Creates a good bridge between traditional theory and modern theory to support researchers and engineers - Links the two fields of power systems and power electronics in electrical engineering


New Technologies for Power System Operation and Analysis

New Technologies for Power System Operation and Analysis

Author: Huaiguang Jiang

Publisher: Academic Press

Published: 2020-11-04

Total Pages: 388

ISBN-13: 0128201681

DOWNLOAD EBOOK

New Technologies for Power System Operation and Analysis considers the very latest developments in renewable energy integration and system operation, including electricity markets and wide-area monitoring systems and forecasting. Helping readers quickly grasp the essential information needed to address renewable energy integration challenges, this new book looks at basic power system mathematical models, advanced renewable integration and system optimizations from transmission and distribution system sides. Sections cover wind, solar, gas and petroleum, making this a useful reference for all engineers interested in power system operation. Includes codes in MATLAB® and Python Provides a complete analysis of all new and relevant power system technologies Covers the impact on existing power system operations at the advanced level, with detailed technical insights


Power Generation, Operation, and Control

Power Generation, Operation, and Control

Author: Allen J. Wood

Publisher: John Wiley & Sons

Published: 2012-11-07

Total Pages: 590

ISBN-13: 111858595X

DOWNLOAD EBOOK

A comprehensive text on the operation and control of power generation and transmission systems In the ten years since Allen J. Wood and Bruce F. Wollenberg presented their comprehensive introduction to the engineering and economic factors involved in operating and controlling power generation systems in electric utilities, the electric power industry has undergone unprecedented change. Deregulation, open access to transmission systems, and the birth of independent power producers have altered the structure of the industry, while technological advances have created a host of new opportunities and challenges. In Power Generation, Operation, and Control, Second Edition, Wood and Wollenberg bring professionals and students alike up to date on the nuts and bolts of the field. Continuing in the tradition of the first edition, they offer a practical, hands-on guide to theoretical developments and to the application of advanced operations research methods to realistic electric power engineering problems. This one-of-a-kind text also addresses the interaction between human and economic factors to prepare readers to make real-world decisions that go beyond the limits of mere technical calculations. The Second Edition features vital new material, including: * A computer disk developed by the authors to help readers solve complicated problems * Examination of Optimal Power Flow (OPF) * Treatment of unit commitment expanded to incorporate the Lagrange relaxation technique * Introduction to the use of bounding techniques and other contingency selection methods * Applications suited to the new, deregulated systems as well as to the traditional, vertically organized utilities company Wood and Wollenberg draw upon nearly 30 years of classroom testing to provide valuable data on operations research, state estimation methods, fuel scheduling techniques, and more. Designed for clarity and ease of use, this invaluable reference prepares industry professionals and students to meet the future challenges of power generation, operation, and control.


Optimization of Power System Operation

Optimization of Power System Operation

Author: Jizhong Zhu

Publisher: John Wiley & Sons

Published: 2016-12-08

Total Pages: 750

ISBN-13: 1118993365

DOWNLOAD EBOOK

Optimization of Power System Operation, 2nd Edition, offers a practical, hands-on guide to theoretical developments and to the application of advanced optimization methods to realistic electric power engineering problems. The book includes: New chapter on Application of Renewable Energy, and a new chapter on Operation of Smart Grid New topics include wheeling model, multi-area wheeling, and the total transfer capability computation in multiple areas Continues to provide engineers and academics with a complete picture of the optimization of techniques used in modern power system operation


Modern Power Systems Analysis

Modern Power Systems Analysis

Author: Xi-Fan Wang

Publisher: Springer Science & Business Media

Published: 2010-06-07

Total Pages: 561

ISBN-13: 0387728538

DOWNLOAD EBOOK

The capability of effectively analyzing complex systems is fundamental to the operation, management and planning of power systems. This book offers broad coverage of essential power system concepts and features a complete and in-depth account of all the latest developments, including Power Flow Analysis in Market Environment; Power Flow Calculation of AC/DC Interconnected Systems and Power Flow Control and Calculation for Systems Having FACTS Devices and recent results in system stability.


Power System Monitoring and Control

Power System Monitoring and Control

Author: Hassan Bevrani

Publisher: John Wiley & Sons

Published: 2014-06-09

Total Pages: 288

ISBN-13: 1118450698

DOWNLOAD EBOOK

POWER SYSTEM MONITORING AND CONTROL An invaluable resource for addressing the myriad critical technical engineering considerations in modern electric power system design and operation Power System Monitoring and Control (PSMC) is becoming increasingly significant in the design, planning, and operation of modern electric power systems. In response to the existing challenge of integrating advanced metering, computation, communication, and control into appropriate levels of PSMC, Power System Monitoring and Control presents a comprehensive overview of the basic principles and key technologies for the monitoring, protection, and control of contemporary wide-area power systems. A variety of topical issues are addressed, including renewable energy sources, smart grids, wide area stabilizing, coordinated voltage regulation and angle oscillation damping—as well as the advantages of phasor measurement units (PMUs) and global positioning system (GPS) time signal. Analysis and synthesis examples, along with case studies, add depth and clarity to all topics. Provides an up-to-date and comprehensive reference for researchers and engineers working on wide-area PSMC Links fundamental concepts of PSMC, advanced metering and control theory/techniques, and practical engineering considerations Covers PSMC problem understanding, design, practical aspects, and topics such as smart grid and coordinated angle oscillation damping and voltage regulation Incorporates the authors’ experiences teaching and researching in international locales including Japan, Singapore, Malaysia, and Australia Power System Monitoring and Control is ideally suited for a graduate course on this topic. It is also a practical reference for researchers and professional engineers working in power system monitoring, dynamic stability and control.


Control Applications in Modern Power System

Control Applications in Modern Power System

Author: Arun Kumar Singh

Publisher: Springer Nature

Published: 2020-11-26

Total Pages: 535

ISBN-13: 9811588155

DOWNLOAD EBOOK

This book presents select proceedings of the Electric Power and Renewable Energy Conference 2020 (EPREC 2020). This book provides rigorous discussions, case studies, and recent developments in emerging areas of control systems, especially, load frequency control, wide-area monitoring, control & instrumentation, optimization, intelligent control, energy management system, SCADA systems, etc. The contents of this book will be useful to researchers and professionals interested in control theory and its applications to power grids and systems. The book can also be used by policy makers and power engineers involved in power generation and distribution.