Modern Methods in Complex Analysis (AM-137), Volume 137

Modern Methods in Complex Analysis (AM-137), Volume 137

Author: Thomas Bloom

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 360

ISBN-13: 1400882575

DOWNLOAD EBOOK

The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.


Complex Analysis and Geometry

Complex Analysis and Geometry

Author: Pierre Dolbeault

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 250

ISBN-13: 3034884362

DOWNLOAD EBOOK

This meeting has been motivated by two events: the 85th birthday of Pierre Lelong, and the end of the third year of the European network "Complex analysis and analytic geometry" from the programme Human Capital and Mobility. For the first event, Mathematicians from Poland, Sweden, United States and France, whose work is particularly related to the one ofP. Lelong have accepted to participate; for the second, the different teams of the Network sent lecturers to report on their most recent works. These teams are from Grenoble, Wuppertal, Berlin, Pisa and Paris VI; in fact, most of their results are also related to Lelong's work and, a posteriori, it is difficult to decide whether a talk is motivated by the first or by the second event. We chose only plenary lectures, usually of one hour, except a small number, given by young mathematicians, which have been shorter. A two hours problem session has been organized. The Proceedings gather papers which are exact texts of the talks, or are closely related to them. The members from the Network and five other lecturers sent us papers; the other lecturers published the content of their talks in mathematical Journals. All the presented texts have been submitted to referees independent of the organizing committee; the texts of the problems have been approved by their authors.


Volumetric Discrete Geometry

Volumetric Discrete Geometry

Author: Karoly Bezdek

Publisher: CRC Press

Published: 2019-04-24

Total Pages: 210

ISBN-13: 1000007162

DOWNLOAD EBOOK

Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems. Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other. Provides a list of 30 open problems to promote research Features more than 60 research exercises Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics


Complex Analysis and Geometry

Complex Analysis and Geometry

Author: Filippo Bracci

Publisher: Springer

Published: 2015-08-05

Total Pages: 370

ISBN-13: 443155744X

DOWNLOAD EBOOK

This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were "hidden" in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This book is suitable for a broad audience of mathematicians at and above the beginning graduate-student level. Many chapters pose open-ended problems for further research, and one in particular is devoted to problems for future investigations.


Multi-Layer Potentials and Boundary Problems

Multi-Layer Potentials and Boundary Problems

Author: Irina Mitrea

Publisher: Springer

Published: 2013-01-05

Total Pages: 430

ISBN-13: 3642326668

DOWNLOAD EBOOK

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces.


Spectral Properties of Self-similar Lattices and Iteration of Rational Maps

Spectral Properties of Self-similar Lattices and Iteration of Rational Maps

Author: Christophe Sabot

Publisher:

Published: 2003

Total Pages: 118

ISBN-13:

DOWNLOAD EBOOK

In this text, the author considers discrete Laplace operators defined on lattices based on finitely ramified self-similar sets and their continuous analogs defined on the self-similar sets. He focuses on the spectral properties of these operators. The basic example is the lattice based on the Sierpinski gasket. He introduces a new renormalization map that appears to be a rational map defined on a smooth projective variety. (More precisely, this variety is isomorphic to a product of three types of Grassmannians: complex Grassmannians, Lagrangian Grassmannian, and orthogonal Grassmannians.) He relates some characteristics of the dynamics of its iterates with some characteristics of the spectrum of the operator. Specifically, he gives an explicit formula for the density of states in terms of the Green current of the map, and he relates the indeterminacy points of the map with the so-called Neumann-Dirichlet eigenvalues which lead to eigenfunctions with compact support on the unbounded lattice. Depending on the asymptotic degree of the map, he can prove drastically different spectral properties of the operators. The formalism is valid for the general class of finitely ramified self-similar sets.


Generalized Fractional Order Differential Equations Arising in Physical Models

Generalized Fractional Order Differential Equations Arising in Physical Models

Author: Santanu Saha Ray

Publisher: CRC Press

Published: 2018-11-13

Total Pages: 269

ISBN-13: 0429771789

DOWNLOAD EBOOK

This book analyzes the various semi-analytical and analytical methods for finding approximate and exact solutions of fractional order partial differential equations. It explores approximate and exact solutions obtained by various analytical methods for fractional order partial differential equations arising in physical models.