Modern Logic fills the strong need for a highly accessible, carefully structured introductory text in symbolic logic. The natural deduction system Forbes uses will be easy for students to understand, and the material is carefully structured, with graded exercises at the end of each section, selected answers to which are provided at the back of the book. The book's emphasis is on giving the student a thorough understanding of the concepts rather than just a facilitywith formal procedures.
This volume contains newly-commissioned articles covering the development of modern logic from the late medieval period (fourteenth century) through the end of the twentieth-century. It is the first volume to discuss the field with this breadth of coverage and depth. It will appeal to scholars and students of philosophical logic and the philosophy of logic.
Sweet Reason: A Field Guide to Modern Logic, 2nd Edition offers an innovative, friendly, and effective introduction to logic. It integrates formal first order, modal, and non-classical logic with natural language reasoning, analytical writing, critical thinking, set theory, and the philosophy of logic and mathematics. An innovative introduction to the field of logic designed to entertain as it informs Integrates formal first order, modal, and non-classical logic with natural language reasoning, analytical writing, critical thinking, set theory, and the philosophy of logic and mathematics Addresses contemporary applications of logic in fields such as computer science and linguistics A web-site (www.wiley.com/go/henle) linked to the text features numerous supplemental exercises and examples, enlightening puzzles and cartoons, and insightful essays
Two-volume introduction to formal logic. Volume I presents sentence logic and Volume II covers predicate logic and metatheory. Features easy-to-understand explanations and graded exercises.
Examines the relations between logic and philosophy over the last 150 years. Logic underwent a major renaissance beginning in the nineteenth century. Cantor almost tamed the infinite, and Frege aimed to undercut Kant by reducing mathematics to logic. These achievements were threatened by the paradoxes, like Russell's. This ferment generated excellent philosophy (and mathematics) by excellent philosophers (and mathematicians) up to World War II. This book provides a selective, critical history of the collaboration between logic and philosophy during this period. After World War II, mathematical logic became a recognized subdiscipline in mathematics departments, and consequently but unfortunately philosophers have lost touch with its monuments. This book aims to make four of them (consistency and independence of the continuum hypothesis, Post's problem, and Morley's theorem) more accessible to philosophers, making available the tools necessary for modern scholars of philosophy to renew a productive dialogue between logic and philosophy.
This reissue, first published in 1971, provides a brief historical account of the Theory of Logical Types; and describes the problems that gave rise to it, its various different formulations (Simple and Ramified), the difficulties connected with each, and the criticisms that have been directed against it. Professor Copi seeks to make the subject accessible to the non-specialist and yet provide a sufficiently rigorous exposition for the serious student to see exactly what the theory is and how it works.
This edited volume presents a comprehensive history of modern logic from the Middle Ages through the end of the twentieth century. In addition to a history of symbolic logic, the contributors also examine developments in the philosophy of logic and philosophical logic in modern times. The book begins with chapters on late medieval developments and logic and philosophy of logic from Humanism to Kant. The following chapters focus on the emergence of symbolic logic with special emphasis on the relations between logic and mathematics, on the one hand, and on logic and philosophy, on the other. This discussion is completed by a chapter on the themes of judgment and inference from 1837-1936. The volume contains a section on the development of mathematical logic from 1900-1935, followed by a section on main trends in mathematical logic after the 1930s. The volume goes on to discuss modal logic from Kant till the late twentieth century, and logic and semantics in the twentieth century; the philosophy of alternative logics; the philosophical aspects of inductive logic; the relations between logic and linguistics in the twentieth century; the relationship between logic and artificial intelligence; and ends with a presentation of the main schools of Indian logic. The Development of Modern Logic includes many prominent philosophers from around the world who work in the philosophy and history of mathematics and logic, who not only survey developments in a given period or area but also seek to make new contributions to contemporary research in the field. It is the first volume to discuss the field with this breadth of coverage and depth, and will appeal to scholars and students of logic and its philosophy.
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.