The four-volume treatment Modern Crystallography presents an encyclopaedic exposition of problems concerning the structure of crystals, their growth and their properties. Structure of Crystals deals with crystal structures in inorganic and organic compounds, polymers, liquid crystals, biological crystals and macromolecules.
Early in this century, the newly discovered x-ray diffraction by crystals made a complete change in crystallography and in the whole science of the atomic structure of matter, thus giving a new impetus to the development of solid-state physics. Crystallographic methods, pri marily x-ray diffraction analysis, penetrated into materials sciences, mol ecular physics, and chemistry, and also into many other branches of science. Later, electron and neutron diffraction structure analyses be came important since they not only complement x-ray data, but also supply new information on the atomic and the real structure of crystals. Electron microscopy and other modern methods of investigating mat ter-optical, electronic paramagnetic, nuclear magnetic, and other res onance techniques-yield a large amount of information on the atomic, electronic, and real crystal structures. Crystal physics has also undergone vigorous development. Many re markable phenomena have been discovered in crystals and then found various practical applications. Other important factors promoting the development of crystallog raphy were the elaboration of the theory of crystal growth (which brought crystallography closer to thermodynamics and physical chem istry) and the development of the various methods of growing synthetic crystals dictated by practical needs. Man-made crystals became increas ingly important for physical investigations, and they rapidly invaded technology. The production of synthetic crystals made a tremendous impact on the traditional branches: the mechanical treatment of mate rials, precision instrument making, and the jewelry industry.
This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography and symmetry, applying these concepts to a large range of materials. New to this edition are more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 additional exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualise crystal structures and more abstract mathematical objects, supporting more difficult topics like point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and Powerpoints of figures from the book.
Spatial dispersion, namely, the dependence of the dielectric-constant tensor on the wave vector (i.e., on the wavelength) at a fixed frequency, is receiving increased attention in electrodynamics and condensed-matter optics, partic ularly in crystal optics. In contrast to frequency dispersion, namely, the frequency dependence of the dielectric constant, spatial dispersion is of interest in optics mainly when it leads to qualitatively new phenomena. One such phenomenon has been weH known for many years; it is the natural optical activity (gyrotropy). But there are other interesting effects due to spatial dispersion, namely, new normal waves near absorption lines, optical anisotropy of cubic crystals, and many others. Crystal optics that takes spatial dispersion into account includes classical crystal optics with frequency dispersion only, as a special case. In our opinion, this fact alone justifies efforts to develop crystal optics with spatial dispersion taken into account, although admittedly its influence is smaH in some cases and it is observable only under rather special conditions. Furthermore, spatial dispersion in crystal optics deserves attention from another point as well, namely, the investigation of excitons that can be excited by light. We contend that crystal optics with spatial dispersion and the theory of excitons are fields that overlap to a great extent, and that it is sometimes quite impossible to separate them. It is our aim to show the true interplay be tween these interrelations and to combine the macroscopic and microscopic approaches to crystal optics with spatial dispersion and exciton theory.
Site Symmetry in Crystals is the first comprehensive account of the group-theoretical aspects of the site (local) symmetry approach to the study of crystalline solids. The efficiency of this approach, which is based on the concepts of simple induced and band representations of space groups, is demonstrated by considering newly developed applications to electron surface states, point defects, symmetry analysis in lattice dynamics, the theory of second-order phase transitions, and magnetically ordered and non-rigid crystals. Tables of simple induced respresentations are given for the 24 most common space groups, allowing the rapid analysis of electron and phonon states in complex crystals with many atoms in the unit cell.
The unique and practical Materials Handbook (third edition) provides quick and easy access to the physical and chemical properties of very many classes of materials. Its coverage has been expanded to include whole new families of materials such as minor metals, ferroalloys, nuclear materials, food, natural oils, fats, resins, and waxes. Many of the existing families—notably the metals, gases, liquids, minerals, rocks, soils, polymers, and fuels—are broadened and refined with new material and up-to-date information. Several of the larger tables of data are expanded and new ones added. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, each of twenty-four classes of materials receives attention in its own chapter. The health and safety issues connected with the use and handling of industrial materials are included. Detailed appendices provide additional information on subjects as diverse as crystallography, spectroscopy, thermochemical data, analytical chemistry, corrosion resistance, and economic data for industrial and hazardous materials. Specific further reading sections and a general bibliography round out this comprehensive guide. The index and tabular format of the book makes light work of extracting what the reader needs to know from the wealth of factual information within these covers. Dr. François Cardarelli has spent many years compiling and editing materials data. His professional expertise and experience combine to make this handbook an indispensable reference tool for scientists and engineers working in numerous fields ranging from chemical to nuclear engineering. Particular emphasis is placed on the properties of common industrial materials in each class. After a chapter introducing some general properties of materials, materials are classified as follows. ferrous metals and their alloys; ferroalloys; common nonferrous metals; less common metals; minor metals; semiconductors and superconductors; magnetic materials; insulators and dielectrics; miscellaneous electrical materials; ceramics, refractories and glasses; polymers and elastomers; minerals, ores and gemstones; rocks and meteorites; soils and fertilizers; construction materials; timbers and woods; fuels, propellants and explosives; composite materials; gases; liquids; food, oils, resin and waxes; nuclear materials. food materials
X-ray crystallography provides a unique opportunity to study the arrangement of atoms in a molecule. This book's modern computer-graphics centered approach facilitates the extrapolation of these valuable observations. A unified treatment of crystal systems, the book explains how atoms are arranged in crystals using the metric matrix. Featuring t
From the reviews: "[...] an excellent reference book. I have no doubt it will become a much-thumbed resource for students and researchers in mineralogy and crystallography." Geological Magazine
Modern Crystallography provides an encyclopedic exposition of the field in four volumes written by Russian scientists. Structures of Crystals considers the ideal and real atomic structure of crystals as well as their electronic structures, the fundamentals of chemical bonding between atoms, geometric representations in the theory of crystal structure and crystal chemistry, as well as lattice energy. The important classes of crystal structures in inorganic compounds as well as structure polymers, liquid crystals, biological crystals, and macromolecules are treated. This second edition is complemented by recent data on many types of crystal structures - fullerenes, high-temperature superconductors, minerals, liquid crystals, etc.