Modern Approaches to Clinical Trials Using SAS: Classical, Adaptive, and Bayesian Methods

Modern Approaches to Clinical Trials Using SAS: Classical, Adaptive, and Bayesian Methods

Author: Sandeep Menon

Publisher: SAS Institute

Published: 2015-12-09

Total Pages: 364

ISBN-13: 1629600849

DOWNLOAD EBOOK

This book covers domains of modern clinical trial design: classical, group sequential, adaptive, and Bayesian methods applicable to and used in various phases of pharmaceutical development. Written for biostatisticians, pharmacometricians, clinical developers, and statistical programmers involved in the design, analysis, and interpretation of clinical trials, as well as students in graduate and postgraduate programs in statistics or biostatistics, it covers topics including: dose-response and dose-escalation designs; sequential methods to stop trials early for overwhelming efficacy, safety, or futility; Bayesian designs incorporating historical data; adaptive sample size re-estimation and randomization to allocate subjects to effective treatments; population enrichment designs. Methods are illustrated using clinical trials from diverse therapeutic areas, including dermatology, endocrinology, infectious disease, neurology, oncology and rheumatology. --


Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials

Author: Mark Chang

Publisher: CRC Press

Published: 2019-03-20

Total Pages: 255

ISBN-13: 1351214527

DOWNLOAD EBOOK

"This is truly an outstanding book. [It] brings together all of the latest research in clinical trials methodology and how it can be applied to drug development.... Chang et al provide applications to industry-supported trials. This will allow statisticians in the industry community to take these methods seriously." Jay Herson, Johns Hopkins University The pharmaceutical industry's approach to drug discovery and development has rapidly transformed in the last decade from the more traditional Research and Development (R & D) approach to a more innovative approach in which strategies are employed to compress and optimize the clinical development plan and associated timelines. However, these strategies are generally being considered on an individual trial basis and not as part of a fully integrated overall development program. Such optimization at the trial level is somewhat near-sighted and does not ensure cost, time, or development efficiency of the overall program. This book seeks to address this imbalance by establishing a statistical framework for overall/global clinical development optimization and providing tactics and techniques to support such optimization, including clinical trial simulations. Provides a statistical framework for achieve global optimization in each phase of the drug development process. Describes specific techniques to support optimization including adaptive designs, precision medicine, survival-endpoints, dose finding and multiple testing. Gives practical approaches to handling missing data in clinical trials using SAS. Looks at key controversial issues from both a clinical and statistical perspective. Presents a generous number of case studies from multiple therapeutic areas that help motivate and illustrate the statistical methods introduced in the book. Puts great emphasis on software implementation of the statistical methods with multiple examples of software code (both SAS and R). It is important for statisticians to possess a deep knowledge of the drug development process beyond statistical considerations. For these reasons, this book incorporates both statistical and "clinical/medical" perspectives.


Statistical Methods in Biomarker and Early Clinical Development

Statistical Methods in Biomarker and Early Clinical Development

Author: Liang Fang

Publisher: Springer Nature

Published: 2019-12-26

Total Pages: 354

ISBN-13: 3030315037

DOWNLOAD EBOOK

This contributed volume offers a much-needed overview of the statistical methods in early clinical drug and biomarker development. Chapters are written by expert statisticians with extensive experience in the pharmaceutical industry and regulatory agencies. Because of this, the data presented is often accompanied by real world case studies, which will help make examples more tangible for readers. The many applications of statistics in drug development are covered in detail, making this volume a must-have reference. Biomarker development and early clinical development are the two critical areas on which the book focuses. By having the two sections of the book dedicated to each of these topics, readers will have a more complete understanding of how applying statistical methods to early drug development can help identify the right drug for the right patient at the right dose. Also presented are exciting applications of machine learning and statistical modeling, along with innovative methods and state-of-the-art advances, making this a timely and practical resource. This volume is ideal for statisticians, researchers, and professionals interested in pharmaceutical research and development. Readers should be familiar with the fundamentals of statistics and clinical trials.


Quantitative Decisions in Drug Development

Quantitative Decisions in Drug Development

Author: Christy Chuang-Stein

Publisher: Springer Nature

Published: 2021-09-03

Total Pages: 354

ISBN-13: 3030797317

DOWNLOAD EBOOK

This book focuses on important decision points and evidence needed for making decisions at these points during the development of a new drug. It takes a holistic approach towards drug development by incorporating explicitly knowledge learned from the earlier part of the development and available historical information into decisions at later stages. In addition, the book shares lessons learned from several select examples published in the literature since the publication of the first edition. The second edition reiterates the need for making evidence-based Go/No Go decisions in drug development discussed in the first edition. It substantially expands several topics that have seen great advances since the publication of the first edition. The most noticeable additions include three adaptive trials conducted in recent years that offer excellent learning opportunities, the use of historical data in the design and analysis of clinical trials, and extending decision criteria to the cases when the primary endpoint is binary. The examples used to illustrate the additional materials all come from real trials with some post-trial reflections offered by the authors. The book begins with an overview of product development and regulatory approval pathways. It then discusses how to incorporate prior knowledge into study design and decision making at different stages of drug development. Prior knowledge includes information pertaining to historical controls. To assist decision making, the book discusses appropriate metrics and the formulation of go/no-go decisions for progressing a drug candidate to the next development stage. Using the concept of the positive predictive value in the field of diagnostics, the book leads readers to the assessment of the probability that an investigational product is effective given positive study outcomes. Lastly, the book points out common mistakes made by drug developers under the current drug-development paradigm. The book offers useful insights to statisticians, clinicians, regulatory affairs managers and decision-makers in the pharmaceutical industry who have a basic understanding of the drug-development process and the clinical trials conducted to support drug-marketing authorization. The authors provide software codes for select analytical approaches discussed in the book. The book includes enough technical details to allow statisticians to replicate the quantitative illustrations so that they can generate information to facilitate decision-making themselves.


Biosimilar Clinical Development: Scientific Considerations and New Methodologies

Biosimilar Clinical Development: Scientific Considerations and New Methodologies

Author: Kerry B. Barker

Publisher: CRC Press

Published: 2016-11-25

Total Pages: 269

ISBN-13: 1482231700

DOWNLOAD EBOOK

Biosimilars have the potential to change the way we think about, identify, and manage health problems. They are already impacting both clinical research and patient care, and this impact will only grow as our understanding and technologies improve. Written by a team of experienced specialists in clinical development, this book discusses various potential drug development strategies, the design and analysis of pharmacokinetics (PK) studies, and the design and analysis of efficacy studies.


Handbook of Methods for Designing, Monitoring, and Analyzing Dose-Finding Trials

Handbook of Methods for Designing, Monitoring, and Analyzing Dose-Finding Trials

Author: John O'Quigley

Publisher: CRC Press

Published: 2017-04-27

Total Pages: 390

ISBN-13: 1351648020

DOWNLOAD EBOOK

Handbook of Methods for Designing, Monitoring, and Analyzing Dose-Finding Trials gives a thorough presentation of state-of-the-art methods for early phase clinical trials. The methodology of clinical trials has advanced greatly over the last 20 years and, arguably, nowhere greater than that of early phase studies. The need to accelerate drug development in a rapidly evolving context of targeted therapies, immunotherapy, combination treatments and complex group structures has provided the stimulus to these advances. Typically, we deal with very small samples, sequential methods that need to be efficient, while, at the same time adhering to ethical principles due to the involvement of human subjects. Statistical inference is difficult since the standard techniques of maximum likelihood do not usually apply as a result of model misspecification and parameter estimates lying on the boundary of the parameter space. Bayesian methods play an important part in overcoming these difficulties, but nonetheless, require special consideration in this particular context. The purpose of this handbook is to provide an expanded summary of the field as it stands and also, through discussion, provide insights into the thinking of leaders in the field as to the potential developments of the years ahead. With this goal in mind we present: An introduction to the field for graduate students and novices A basis for more established researchers from which to build A collection of material for an advanced course in early phase clinical trials A comprehensive guide to available methodology for practicing statisticians on the design and analysis of dose-finding experiments An extensive guide for the multiple comparison and modeling (MCP-Mod) dose-finding approach, adaptive two-stage designs for dose finding, as well as dose–time–response models and multiple testing in the context of confirmatory dose-finding studies. John O’Quigley is a professor of mathematics and research director at the French National Institute for Health and Medical Research based at the Faculty of Mathematics, University Pierre and Marie Curie in Paris, France. He is author of Proportional Hazards Regression and has published extensively in the field of dose finding. Alexia Iasonos is an associate attending biostatistician at the Memorial Sloan Kettering Cancer Center in New York. She has over one hundred publications in the leading statistical and clinical journals on the methodology and design of early phase clinical trials. Dr. Iasonos has wide experience in the actual implementation of model based early phase trials and has given courses in scientific meetings internationally. Björn Bornkamp is a statistical methodologist at Novartis in Basel, Switzerland, researching and implementing dose-finding designs in Phase II clinical trials. He is one of the co-developers of the MCP-Mod methodology for dose finding and main author of the DoseFinding R package. He has published numerous papers on dose finding, nonlinear models and Bayesian statistics, and in 2013 won the Royal Statistical Society award for statistical excellence in the pharmaceutical industry.


Adaptive Design Theory and Implementation Using SAS and R

Adaptive Design Theory and Implementation Using SAS and R

Author: Mark Chang

Publisher: CRC Press

Published: 2014-12-01

Total Pages: 689

ISBN-13: 1482256606

DOWNLOAD EBOOK

Get Up to Speed on Many Types of Adaptive DesignsSince the publication of the first edition, there have been remarkable advances in the methodology and application of adaptive trials. Incorporating many of these new developments, Adaptive Design Theory and Implementation Using SAS and R, Second Edition offers a detailed framework to understand the


Bayesian Signal Processing

Bayesian Signal Processing

Author: James V. Candy

Publisher: John Wiley & Sons

Published: 2016-06-20

Total Pages: 638

ISBN-13: 1119125472

DOWNLOAD EBOOK

Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.


Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS

Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS

Author: Richard C. Zink

Publisher: SAS Institute

Published: 2014-07-01

Total Pages: 387

ISBN-13: 1629592331

DOWNLOAD EBOOK

Improve efficiency while reducing costs in clinical trials with centralized monitoring techniques using JMP and SAS. International guidelines recommend that clinical trial data should be actively reviewed or monitored; the well-being of trial participants and the validity and integrity of the final analysis results are at stake. Traditional interpretation of this guidance for pharmaceutical trials has led to extensive on-site monitoring, including 100% source data verification. On-site review is time consuming, expensive (estimated at up to a third of the cost of a clinical trial), prone to error, and limited in its ability to provide insight for data trends across time, patients, and clinical sites. In contrast, risk-based monitoring (RBM) makes use of central computerized review of clinical trial data and site metrics to determine if and when clinical sites should receive more extensive quality review or intervention. Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS presents a practical implementation of methodologies within JMP Clinical for the centralized monitoring of clinical trials. Focused on intermediate users, this book describes analyses for RBM that incorporate and extend the recommendations of TransCelerate Biopharm Inc., methods to detect potential patient-or investigator misconduct, snapshot comparisons to more easily identify new or modified data, and other novel visual and analytical techniques to enhance safety and quality reviews. Further discussion highlights recent regulatory guidance documents on risk-based approaches, addresses the requirements for CDISC data, and describes methods to supplement analyses with data captured external to the study database. Given the interactive, dynamic, and graphical nature of JMP Clinical, any individual from the clinical trial team - including clinicians, statisticians, data managers, programmers, regulatory associates, and monitors - can make use of this book and the numerous examples contained within to streamline, accelerate, and enrich their reviews of clinical trial data. The analytical methods described in Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS enable the clinical trial team to take a proactive approach to data quality and safety to streamline clinical development activities and address shortcomings while the study is ongoing. This book is part of the SAS Press


Analysis of Clinical Trials Using SAS

Analysis of Clinical Trials Using SAS

Author: Alex Dmitrienko

Publisher: SAS Institute

Published: 2017-07-17

Total Pages: 455

ISBN-13: 1635261449

DOWNLOAD EBOOK

Analysis of Clinical Trials Using SAS®: A Practical Guide, Second Edition bridges the gap between modern statistical methodology and real-world clinical trial applications. Tutorial material and step-by-step instructions illustrated with examples from actual trials serve to define relevant statistical approaches, describe their clinical trial applications, and implement the approaches rapidly and efficiently using the power of SAS. Topics reflect the International Conference on Harmonization (ICH) guidelines for the pharmaceutical industry and address important statistical problems encountered in clinical trials. Commonly used methods are covered, including dose-escalation and dose-finding methods that are applied in Phase I and Phase II clinical trials, as well as important trial designs and analysis strategies that are employed in Phase II and Phase III clinical trials, such as multiplicity adjustment, data monitoring, and methods for handling incomplete data. This book also features recommendations from clinical trial experts and a discussion of relevant regulatory guidelines. This new edition includes more examples and case studies, new approaches for addressing statistical problems, and the following new technological updates: SAS procedures used in group sequential trials (PROC SEQDESIGN and PROC SEQTEST) SAS procedures used in repeated measures analysis (PROC GLIMMIX and PROC GEE) macros for implementing a broad range of randomization-based methods in clinical trials, performing complex multiplicity adjustments, and investigating the design and analysis of early phase trials (Phase I dose-escalation trials and Phase II dose-finding trials) Clinical statisticians, research scientists, and graduate students in biostatistics will greatly benefit from the decades of clinical research experience and the ready-to-use SAS macros compiled in this book.