Modern Analytical Electromagnetic Homogenization with Mathematica

Modern Analytical Electromagnetic Homogenization with Mathematica

Author: Tom G MacKay

Publisher: Myprint

Published: 2020-12-10

Total Pages: 204

ISBN-13: 9780750334242

DOWNLOAD EBOOK

This book is an overview of state-of-the-art analytical homogenization formalisms used to estimate the effective electromagnetic properties of complex composite materials. Beginning with an introduction to homogenization, the book progresses to cover both constitutive and depolarization dyadics. The homogenization formalisms for linear and non-linear materials are examined, followed by their applications and multiple examples using Mathematica code. This text is a valuable reference for PhD students and researchers working on the electromagnetic theory of complex composite materials. Key Features Explicit formulas provided for the homogenization of isotropic, anisotropic, and bianisotropic composite materials Numerical data provided for a wide range of representative homogenized composite materials Includes Mathematica codes to enable readers to readily perform their own calculations


Modern Analytical Electromagnetic Homogenization with Mathematica

Modern Analytical Electromagnetic Homogenization with Mathematica

Author: Tom G. Mackay

Publisher:

Published: 2020-12-04

Total Pages: 204

ISBN-13: 9780750334211

DOWNLOAD EBOOK

This book is an overview of state-of-the-art analytical homogenization formalisms used to estimate the effective electromagnetic properties of complex composite materials. Beginning with an introduction to homogenization, the book progresses to cover both constitutive and depolarization dyadics. The homogenization formalisms for linear and non-linear materials are examined, followed by their applications and multiple examples using Mathematica code. This text is a valuable reference for PhD students and researchers working on the electromagnetic theory of complex composite materials. Key Features Explicit formulas provided for the homogenization of isotropic, anisotropic, and bianisotropic composite materials Numerical data provided for a wide range of representative homogenized composite materials Includes Mathematica codes to enable readers to readily perform their own calculations


Modern Analytical Electromagnetic Homogenization with Mathematica®

Modern Analytical Electromagnetic Homogenization with Mathematica®

Author: Tom G. Mackay

Publisher:

Published: 2020

Total Pages:

ISBN-13: 9780750334228

DOWNLOAD EBOOK

This book is an overview of state-of-the-art analytical homogenization formalisms used to estimate the effective electromagnetic properties of complex composite materials. Beginning with an introduction to homogenization, the book progresses to cover both constitutive and depolarization dyadics. The homogenization formalisms for linear and non-linear materials are examined, followed by their applications and multiple examples using Mathematica code. This text is a valuable reference for PhD students and researchers working on the electromagnetic theory of complex composite materials.


Modern Analytical Electromagnetic Homogenization

Modern Analytical Electromagnetic Homogenization

Author: Tom G Mackay

Publisher: Morgan & Claypool Publishers

Published: 2015-07-01

Total Pages: 129

ISBN-13: 1627054278

DOWNLOAD EBOOK

Electromagnetic homogenization is the process of estimating the effective electromagnetic properties of composite materials in the long-wavelength regime, wherein the length scales of nonhomogeneities are much smaller than the wavelengths involved. This is a bird’s-eye view of currently available homogenization formalisms for particulate composite materials. It presents analytical methods only, with focus on the general settings of anisotropy and bianisotropy. The authors largely concentrate on ‘effective’ materials as opposed to ‘equivalent’ materials, and emphasize the fundamental (but sometimes overlooked) differences between these two categories of homogenized composite materials. The properties of an ‘effective’ material represents those of its composite material, regardless of the geometry and dimensions of the bulk materials and regardless of the orientations and polarization states of the illuminating electromagnetic fields. In contrast, the properties of ‘equivalent’ materials only represent those of their corresponding composite materials under certain restrictive circumstances.


Modern Analytical Electromagnetic Homogenization

Modern Analytical Electromagnetic Homogenization

Author: Tom G. Mackay

Publisher:

Published: 2015

Total Pages:

ISBN-13: 9781627057400

DOWNLOAD EBOOK

Electromagnetic homogenization is the process of estimating the effective electromagnetic properties of composite materials in the long-wavelength regime, wherein the length scales of nonhomogeneities are much smaller than the wavelengths involved. This is a bird's-eye view of currently available homogenization formalisms for particulate composite materials. It presents analytical methods only, with focus on the general settings of anisotropy and bianisotropy.


Mathematical Foundations for Electromagnetic Theory

Mathematical Foundations for Electromagnetic Theory

Author: Donald G. Dudley

Publisher: Wiley-IEEE Press

Published: 1994-05-18

Total Pages: 264

ISBN-13: 9780780310223

DOWNLOAD EBOOK

Co-published with Oxford University Press. This highly technical and thought-provoking book stresses the development of mathematical foundations for the application of the electromagnetic model to problems of research and technology. Features include in-depth coverage of linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. This book will be of interest graduate-level students in engineering, electromagnetics, physics, and applied mathematics as well as to research engineers, physicists, and scientists.


Multivariable Calculus with Mathematica

Multivariable Calculus with Mathematica

Author: Robert P. Gilbert

Publisher: CRC Press

Published: 2020-11-25

Total Pages: 418

ISBN-13: 1351665464

DOWNLOAD EBOOK

Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student’s theoretical understanding of the mathematics, and there are also computer algebra questions which test the student’s ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students’ interest and encourages the understanding of the mathematical ideas


Acoustic Metamaterials

Acoustic Metamaterials

Author: Richard V. Craster

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 333

ISBN-13: 9400748132

DOWNLOAD EBOOK

About the book: This book is the first comprehensive review on acoustic metamaterials; novel materials which can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. It covers both experimental and theoretical aspects of acoustic and elastic waves propagating in structured composites, with a focus on effective properties associated with negative refraction, lensing and cloaking. Most related books in the field address electromagnetic metamaterials and focus on numerical methods, and little (or no) experimental section. Each chapter will be authored by an acknowledged expert, amongst the topics covered will be experimental results on non-destructive imaging, cloaking by surface water waves, flexural waves in thin plates. Applications in medical ultrasound imaging and modeling of metamaterials will be emphasized too. The book can serve as a reference for researchers who wish to build a solid foundation of wave propagation in this class of novel materials.


The Theory of Composites

The Theory of Composites

Author: Graeme W. Milton

Publisher: SIAM

Published: 2022-12-07

Total Pages: 761

ISBN-13: 1611977487

DOWNLOAD EBOOK

Composites have been studied for more than 150 years, and interest in their properties has been growing. This classic volume provides the foundations for understanding a broad range of composite properties, including electrical, magnetic, electromagnetic, elastic and viscoelastic, piezoelectric, thermal, fluid flow through porous materials, thermoelectric, pyroelectric, magnetoelectric, and conduction in the presence of a magnetic field (Hall effect). Exact solutions of the PDEs in model geometries provide one avenue of understanding composites; other avenues include microstructure-independent exact relations satisfied by effective moduli, for which the general theory is reviewed; approximation formulae for effective moduli; and series expansions for the fields and effective moduli that are the basis of numerical methods for computing these fields and moduli. The range of properties that composites can exhibit can be explored either through the model geometries or through microstructure-independent bounds on the properties. These bounds are obtained through variational principles, analytic methods, and Hilbert space approaches. Most interesting is when the properties of the composite are unlike those of the constituent materials, and there has been an explosion of interest in such composites, now known as metamaterials. The Theory of Composites surveys these aspects, among others, and complements the new body of literature that has emerged since the book was written. It remains relevant today by providing historical background, a compendium of numerous results, and through elucidating many of the tools still used today in the analysis of composite properties. This book is intended for applied mathematicians, physicists, and electrical and mechanical engineers. It will also be of interest to graduate students.