Models for Smooth Infinitesimal Analysis

Models for Smooth Infinitesimal Analysis

Author: Ieke Moerdijk

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 401

ISBN-13: 147574143X

DOWNLOAD EBOOK

The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.


A Primer of Infinitesimal Analysis

A Primer of Infinitesimal Analysis

Author: John L. Bell

Publisher: Cambridge University Press

Published: 2008-04-07

Total Pages: 7

ISBN-13: 0521887186

DOWNLOAD EBOOK

A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.


The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics

The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics

Author: John L. Bell

Publisher: Springer Nature

Published: 2019-09-09

Total Pages: 320

ISBN-13: 3030187071

DOWNLOAD EBOOK

This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.


Synthetic Differential Geometry

Synthetic Differential Geometry

Author: Anders Kock

Publisher: Cambridge University Press

Published: 2006-06-22

Total Pages: 245

ISBN-13: 0521687381

DOWNLOAD EBOOK

This book, first published in 2006, details how limit processes can be represented algebraically.


Sketches of an Elephant: A Topos Theory Compendium

Sketches of an Elephant: A Topos Theory Compendium

Author: P. T. Johnstone

Publisher: Oxford University Press

Published: 2002-09-12

Total Pages: 836

ISBN-13: 9780198515982

DOWNLOAD EBOOK

Topos Theory is a subject that stands at the junction of geometry, mathematical logic and theoretical computer science, and it derives much of its power from the interplay of ideas drawn from these different areas. Because of this, an account of topos theory which approaches the subject from one particular direction can only hope to give a partial picture; the aim of this compendium is to present as comprehensive an account as possible of all the main approaches and to thereby demonstrate the overall unity of the subject. The material is organized in such a way that readers interested in following a particular line of approach may do so by starting at an appropriate point in the text.


Non-standard Analysis

Non-standard Analysis

Author: Abraham Robinson

Publisher: Princeton University Press

Published: 2016-08-11

Total Pages: 315

ISBN-13: 1400884225

DOWNLOAD EBOOK

Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.


Discrete Choice Methods with Simulation

Discrete Choice Methods with Simulation

Author: Kenneth Train

Publisher: Cambridge University Press

Published: 2009-07-06

Total Pages: 399

ISBN-13: 0521766559

DOWNLOAD EBOOK

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.


A Course in Model Theory

A Course in Model Theory

Author: Katrin Tent

Publisher: Cambridge University Press

Published: 2012-03-08

Total Pages: 259

ISBN-13: 052176324X

DOWNLOAD EBOOK

Concise introduction to current topics in model theory, including simple and stable theories.


Exotic Smoothness And Physics: Differential Topology And Spacetime Models

Exotic Smoothness And Physics: Differential Topology And Spacetime Models

Author: Torsten Asselmeyer-maluga

Publisher: World Scientific

Published: 2007-01-23

Total Pages: 339

ISBN-13: 9814493740

DOWNLOAD EBOOK

The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.


Computer Algebra in Scientific Computing

Computer Algebra in Scientific Computing

Author: François Boulier

Publisher: Springer Nature

Published: 2021-08-16

Total Pages: 485

ISBN-13: 3030851656

DOWNLOAD EBOOK

This book constitutes the proceedings of the 23rd International Workshop on Computer Algebra in Scientific Computing, CASC 2021, held in Sochi, Russia, in September 2021. The 24 full papers presented together with 1 invited talk were carefully reviewed and selected from 40 submissions. The papers cover theoretical computer algebra and its applications in scientific computing.