"Contains a balanced account of recent advances in set theory, model theory, algebraic logic, and proof theory, originally presented at the Tenth Latin American Symposium on Mathematical Logic held in Bogata, Columbia. Traces new interactions among logic, mathematics, and computer science. Features original research from over 30 well-known experts worldwide."
Contains a balanced account of recent advances in set theory, model theory, algebraic logic, and proof theory, originally presented at the Tenth Latin American Symposium on Mathematical Logic held in Bogata, Columbia. Traces new interactions among logic, mathematics, and computer science. Features original research from over 30 well-known experts.
Here is an introduction to modern logic that differs from others by treating logic from an algebraic perspective. What this means is that notions and results from logic become much easier to understand when seen from a familiar standpoint of algebra. The presentation, written in the engaging and provocative style that is the hallmark of Paul Halmos, from whose course the book is taken, is aimed at a broad audience, students, teachers and amateurs in mathematics, philosophy, computer science, linguistics and engineering; they all have to get to grips with logic at some stage. All that is needed.
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Studies in Logic and the Foundations of Mathematics: The Theory of Models covers the proceedings of the International Symposium on the Theory of Models, held at the University of California, Berkeley on June 25 to July 11, 1963. The book focuses on works devoted to the foundations of mathematics, generally known as "the theory of models." The selection first discusses the method of alternating chains, semantic construction of Lewis's systems S4 and S5, and continuous model theory. Concerns include ordered model theory, 2-valued model theory, semantics, sequents, axiomatization, formulas, axiomatic approach to hierarchies, alternating chains, and difference hierarchies. The text also ponders on Boolean notions extended to higher dimensions, elementary theories with models without automorphisms, and applications of the notions of forcing and generic sets. The manuscript takes a look at a hypothesis concerning the extension of finite relations and its verification for certain special cases, theories of functors and models, model-theoretic methods in the study of elementary logic, and extensions of relational structures. The text also reviews relatively categorical and normal theories, algebraic theories, categories, and functors, denumerable models of theories with extra predicates, and non-standard models for fragments of number theory. The selection is highly recommended for mathematicians and researchers interested in the theory of models.
This book is dedicated to the work of Alasdair Urquhart. The book starts out with an introduction to and an overview of Urquhart’s work, and an autobiographical essay by Urquhart. This introductory section is followed by papers on algebraic logic and lattice theory, papers on the complexity of proofs, and papers on philosophical logic and history of logic. The final section of the book contains a response to the papers by Urquhart. Alasdair Urquhart has made extremely important contributions to a variety of fields in logic. He produced some of the earliest work on the semantics of relevant logic. He provided the undecidability of the logics R (of relevant implication) and E (of relevant entailment), as well as some of their close neighbors. He proved that interpolation fails in some of those systems. Urquhart has done very important work in complexity theory, both about the complexity of proofs in classical and some nonclassical logics. In pure algebra, he has produced a representation theorem for lattices and some rather beautiful duality theorems. In addition, he has done important work in the history of logic, especially on Bertrand Russell, including editing Volume four of Russell’s Collected Papers.
This volume focuses on the education of researchers, teachers, students and practitioners. As usual in engineering, a study and application of the relevant branches of mathematics is crucial both in education and practice.