Modelling Nuclear Energy Systems with MESSAGE

Modelling Nuclear Energy Systems with MESSAGE

Author: International Atomic Energy Agency

Publisher: IAEA Nuclear Energy Series No.

Published: 2016

Total Pages: 0

ISBN-13: 9789201097156

DOWNLOAD EBOOK

Assessing nuclear energy transition scenarios requires appropriate modelling tools. The IAEA tool Model for Energy Supply System Alternatives and their General Environmental Impacts (MESSAGE) is described in this publication. The tool simulates the development of a complete energy system and provides a convenient platform for modelling and analysing nuclear energy systems (NES), as it can efficiently model nuclear technologies with their specific features. Among other things, the tool can help produce a description of an entire NES with time dependent parameters for long-term planning; confirm the feasibility of a NES through correlation and consistency of all NES components, taking into account all constraints and boundary conditions imposed on the system; balance fissile material in a close fuel cycle and determine fuel cycle requirements. In addition, it assists the user in the choice of alternatives by comparison of different options relating to fuel requirements and volume and toxicity of waste. The publication provides a detailed guidance on how to build mathematical models representing complex nuclear energy systems within the framework of the MESSAGE tool.


Experience in Modelling Nuclear Energy Systems with MESSAGE

Experience in Modelling Nuclear Energy Systems with MESSAGE

Author: International Atomic Energy Agency

Publisher:

Published: 2018-02

Total Pages: 280

ISBN-13: 9789201094179

DOWNLOAD EBOOK

Member States have recognized the increasing need to model future nuclear power scenarios in order to develop strategies for sustainable nuclear energy systems. The IAEA model for energy supply strategy alternatives and their general environmental impacts (MESSAGE) code is a tool that supports energy analysis and planning in Member States. This publication documents the experience gained on modelling and scenario analysis of nuclear energy systems (NES) using the MESSAGE code through various case studies performed by the participating Member States on evaluation and planning for nuclear energy sustainability at the regional or national level. The publication also elaborates on experience gained in modelling of global nuclear energy systems with a focus on specific aspects of collaboration among technology holder and technology user countries and the introduction of innovative nuclear technologies. It presents country case studies covering a variety of nuclear energy systems based on a once-through fuel cycle and a closed fuel cycle for thermal reactors, fast reactors and advanced systems. The feedback from case studies proves the analytical capabilities of the MESSAGE model and highlight the path forward for further advancements in the MESSAGE code and NES modelling.


Nuclear Fuel Cycle Simulation System (VISTA)

Nuclear Fuel Cycle Simulation System (VISTA)

Author: International Atomic Energy Agency

Publisher: IAEA

Published: 2007

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK

The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. It is a scenario based simulation tool which can model several nuclear fuel cycle options including existing nuclear power reactor types and future possible reactor types. The past operations of the power reactors and fuel cycle facilities can be modelled in the system, in order to estimate the current amount of spent fuel stored or total Pu in stored spent fuel. It can also accept future projections for nuclear power and other scenario parameters in order to predict future fuel cycle material requirements.The model has been designed to be an optimum mixture of simplicity, speed and accuracy. It does not require too many input parameters if the purpose is just to compare the requirements for selected scenarios. Furthermore, the accuracy of the system can be improved by introducing more detailed and correct sets of input parameters.


Planning Enhanced Nuclear Energy Sustainability: Analysis Support for Enhanced Nuclear Energy Sustainability (ASENES)

Planning Enhanced Nuclear Energy Sustainability: Analysis Support for Enhanced Nuclear Energy Sustainability (ASENES)

Author: IAEA

Publisher: International Atomic Energy Agency

Published: 2021-07-14

Total Pages: 76

ISBN-13: 9201053215

DOWNLOAD EBOOK

This publication describes the purpose and scope of the INPRO service Analysis Support for Enhanced Nuclear Energy Sustainability (ASENES) and its potential benefits to Member States. The publication highlights the links between this service and overall technical support to Member States for the planning and development of nuclear energy, and explains how it integrates with other IAEA services supporting knowledgeable decision making on nuclear power. An overview of analytical tools developed by INPRO for this purpose is also provided.


Approaches for Assessing the Economic Competitiveness of Small and Medium Sized Reactors

Approaches for Assessing the Economic Competitiveness of Small and Medium Sized Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9789201442109

DOWNLOAD EBOOK

This publication assists existing and potential stakeholders in the definition of competitive approaches regarding design and deployment of small and medium sized reactors (SMR). It provides a framework for assessment of the investment attractiveness of nuclear power plant projects that adopts small reactor to be deployed in multi-modules and incorporate modularization construction technology. Main chapters detail past experience and future plans in several IAEA Member States and present the suite of models to assist designers and guide potential users on the economic performance and investment attractiveness of SMRs. A framework for the consolidated application of such models is also suggested. The annexes, contributed by Member States, provide in depth descriptions of different assessment models and give examples of their application.


Nuclear Fuel Cycle Optimization

Nuclear Fuel Cycle Optimization

Author: P. Silvennoinen

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 139

ISBN-13: 1483145549

DOWNLOAD EBOOK

Nuclear Fuel Cycle Optimization: Methods and Modelling Techniques discusses applicable methods for analysis of fuel cycle logistics and optimization and evaluation of the economics of various reactor strategies. The opening chapter covers the nuclear fuel cycle, while the next chapter tackles uranium supply and demand. Chapter 3 discusses basic model of the light water reactor (LWR). The fourth chapter talks about the resolution of uncertainties, and the fifth chapter discusses the assessment of proliferation risks. Chapter 6 covers multigoal optimization, while Chapter 7 deals with the generalized fuel cycle models. The eighth chapter covers reactor strategy calculations, whereas the last chapter discusses interface with energy strategy. The book will appeal to students of energy economics or of nuclear engineering.


Nuclear Energy Basic Principles

Nuclear Energy Basic Principles

Author: International Atomic Energy Agency

Publisher:

Published: 2008

Total Pages: 0

ISBN-13: 9789201126085

DOWNLOAD EBOOK

Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.


Advanced Concepts In Nuclear Energy Risk Assessment And Management

Advanced Concepts In Nuclear Energy Risk Assessment And Management

Author: Tunc Aldemir

Publisher: World Scientific

Published: 2018-04-25

Total Pages: 554

ISBN-13: 9813225629

DOWNLOAD EBOOK

Over the past 30 years, numerous concerns have been raised in the literature regarding the capability of static modeling approaches such as the event-tree (ET)/fault-tree (FT) methodology to adequately account for the impact of process/hardware/software/firmware/human interactions on nuclear power plant safety assessment, and methodologies to augment the ET/FT approach have been proposed. Often referred to as dynamic probabilistic risk/safety assessment (DPRA/DPSA) methodologies, which use a time-dependent phenomenological model of system evolution along with a model of its stochastic behavior to model for possible dependencies among failure events. The book contains a collection of papers that describe at existing plant level applicable DPRA/DPSA tools, as well as techniques that can be used to augment the ET/FT approach when needed.