Modelling Methodology for Physiology and Medicine

Modelling Methodology for Physiology and Medicine

Author: Ewart Carson

Publisher: Newnes

Published: 2013-12-05

Total Pages: 589

ISBN-13: 0124095259

DOWNLOAD EBOOK

Modelling Methodology for Physiology and Medicine, Second Edition, offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modeling methodology that is widely applicable to physiology and medicine. The second edition, which is completely updated and expanded, opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. The focus of Modelling Methodology for Physiology and Medicine, Second Edition, is the methodology that underpins good modeling practice. It builds upon the idea of an integrated methodology for the development and testing of mathematical models. It covers many specific areas of methodology in which important advances have taken place over recent years and illustrates the application of good methodological practice in key areas of physiology and medicine. It builds on work that the editors have carried out over the past 30 years, working in cooperation with leading practitioners in the field. - Builds upon and enhances the reader's existing knowledge of modeling methodology and practice - Editors are internationally renowned leaders in their respective fields - Provides an understanding of modeling methodologies that can address real problems in physiology and medicine and achieve results that are beneficial either in advancing research or in providing solutions to clinical problems


Modelling Methodology for Physiology and Medicine

Modelling Methodology for Physiology and Medicine

Author: Ewart Carson

Publisher: Elsevier

Published: 2000-12-31

Total Pages: 437

ISBN-13: 0080511902

DOWNLOAD EBOOK

Modelling Methodology for Physiology and Medicine offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modelling methodology that is widely applicable to physiology and medicine. The book opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. - Builds upon and enhances the readers existing knowledge of modelling methodology and practice - Editors are internationally renowned leaders in their respective fields


Introduction to Modeling in Physiology and Medicine

Introduction to Modeling in Physiology and Medicine

Author: Claudio Cobelli

Publisher: Elsevier

Published: 2008-02-06

Total Pages: 337

ISBN-13: 0080559980

DOWNLOAD EBOOK

This unified modeling textbook for students of biomedical engineering provides a complete course text on the foundations, theory and practice of modeling and simulation in physiology and medicine. It is dedicated to the needs of biomedical engineering and clinical students, supported by applied BME applications and examples. Developed for biomedical engineering and related courses: speaks to BME students at a level and in a language appropriate to their needs, with an interdisciplinary clinical/engineering approach, quantitative basis, and many applied examples to enhance learning Delivers a quantitative approach to modeling and also covers simulation: the perfect foundation text for studies across BME and medicine Extensive case studies and engineering applications from BME, plus end-of-chapter exercises


Introduction to Modeling in Physiology and Medicine

Introduction to Modeling in Physiology and Medicine

Author: Claudio Cobelli

Publisher: Academic Press

Published: 2019-08-01

Total Pages: 384

ISBN-13: 0128158050

DOWNLOAD EBOOK

Introduction to Modeling in Physiology and Medicine, Second Edition, develops a clear understanding of the fundamental principles of good modeling methodology. Sections show how to create valid mathematical models that are fit for a range of purposes. These models are supported by detailed explanation, extensive case studies, examples and applications. This updated edition includes clearer guidance on the mathematical prerequisites needed to achieve the maximum benefit from the material, a greater detail regarding basic approaches to modeling, and discussions on non-linear and stochastic modeling. The range of case study material has been substantially extended, with examples drawn from recent research experience. Key examples include a cellular model of insulin secretion and its extension to the whole-body level, a model of insulin action during a meal/oral glucose tolerance test, a large-scale simulation model of type 1 diabetes and its use in in silico clinical trials and drug trials. Covers the underlying principles of good quantitative modeling methodology, with applied biomedical engineering and bioscience examples to ensure relevance to students, current research and clinical practice Includes modeling data, modeling systems, linear and non-linear systems, model identification, parametric and non-parametric models, and model validation Presents clear, step-by-step working plus examples and extensive case studies that relate concepts to real world applications Provides end-of-chapter exercises and assignments to reinforce learning


Control Theory in Biomedical Engineering

Control Theory in Biomedical Engineering

Author: Olfa Boubaker

Publisher: Academic Press

Published: 2020-06-30

Total Pages: 398

ISBN-13: 0128226218

DOWNLOAD EBOOK

Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics highlights the importance of control theory and feedback control in our lives and explains how this theory is central to future medical developments. Control theory is fundamental for understanding feedback paths in physiological systems (endocrine system, immune system, neurological system) and a concept for building artificial organs. The book is suitable for graduate students and researchers in the control engineering and biomedical engineering fields, and medical students and practitioners seeking to enhance their understanding of physiological processes, medical robotics (legs, hands, knees), and controlling artificial devices (pacemakers, insulin injection devices).Control theory profoundly impacts the everyday lives of a large part of the human population including the disabled and the elderly who use assistive and rehabilitation robots for improving the quality of their lives and increasing their independence. - Gives an overview of state-of-the-art control theory in physiology, emphasizing the importance of this theory in the medical field through concrete examples, e.g., endocrine, immune, and neurological systems - Takes a comprehensive look at advances in medical robotics and rehabilitation devices and presents case studies focusing on their feedback control - Presents the significance of control theory in the pervasiveness of medical robots in surgery, exploration, diagnosis, therapy, and rehabilitation


Personalized Predictive Modeling in Type 1 Diabetes

Personalized Predictive Modeling in Type 1 Diabetes

Author: Eleni I. Georga

Publisher: Academic Press

Published: 2017-12-11

Total Pages: 253

ISBN-13: 0128051469

DOWNLOAD EBOOK

Personalized Predictive Modeling in Diabetes features state-of-the-art methodologies and algorithmic approaches which have been applied to predictive modeling of glucose concentration, ranging from simple autoregressive models of the CGM time series to multivariate nonlinear regression techniques of machine learning. Developments in the field have been analyzed with respect to: (i) feature set (univariate or multivariate), (ii) regression technique (linear or non-linear), (iii) learning mechanism (batch or sequential), (iv) development and testing procedure and (v) scaling properties. In addition, simulation models of meal-derived glucose absorption and insulin dynamics and kinetics are covered, as an integral part of glucose predictive models. This book will help engineers and clinicians to: select a regression technique which can capture both linear and non-linear dynamics in glucose metabolism in diabetes, and which exhibits good generalization performance under stationary and non-stationary conditions; ensure the scalability of the optimization algorithm (learning mechanism) with respect to the size of the dataset, provided that multiple days of patient monitoring are needed to obtain a reliable predictive model; select a features set which efficiently represents both spatial and temporal dependencies between the input variables and the glucose concentration; select simulation models of subcutaneous insulin absorption and meal absorption; identify an appropriate validation procedure, and identify realistic performance measures. Describes fundamentals of modeling techniques as applied to glucose control Covers model selection process and model validation Offers computer code on a companion website to show implementation of models and algorithms Features the latest developments in the field of diabetes predictive modeling


Modelling and Control in Biomedical Systems 2006

Modelling and Control in Biomedical Systems 2006

Author: David Dagan Feng

Publisher: Elsevier

Published: 2006-09-19

Total Pages: 576

ISBN-13: 0080479499

DOWNLOAD EBOOK

Modelling and Control in Biomedical Systems (including Biological Systems) was held in Reims, France, 20-22 August 2006. This Symposium was organised by the University of Reims Champagne Ardenne and the Société de l’Electricité, de l’Electronique et des TIC (SEE). The Symposium attracted practitioners in engineering, information technology, mathematics, medicine and biology, and other related disciplines, with authors from 24 countries. Besides the abstracts of the four plenary lectures, this volume contains the 92 papers that were presented by their authors at the Symposium. The papers included two invited keynote presentations given by internationally prominent and well-recognised research leaders: Claudio Cobelli, whose talk is titled "Dynamic modelling in diabetes: from whole body to genes"; and Irving J. Bigio, whose talk is titled "Elastic scattering spectroscopy for non-invasive detection of cancer". Two prestigious industrial speakers were also invited to give keynote presentations: Terry O'Brien from LIDCO, whose talk is titled "LIDCO: From the laboratory to protocolized goal directed therapy"; and Lorenzo Quinzio of Philips, whose talk is titled "Clinical decision support in monitoring and information systems". A valuable source of information on the state-of- the-art in Modelling and Control in Biomedical Systems Including abstracts of four plenary lectures, and 92 papers presented by their authors


Quantitative Physiology

Quantitative Physiology

Author: Shangbin Chen

Publisher: Springer Nature

Published: 2021-02-09

Total Pages: 246

ISBN-13: 9813340339

DOWNLOAD EBOOK

Stephen Hawking says that the 21st century will be the century of complexity and indeed now systems biology or medicine means dealing with complexity. Both the genome and physiome have emerged in studying complex physiological systems. Computational and mathematical modeling has been regarded as an efficient tool to boost the understanding about living systems in normal or pathophysiological states. Covering applied methodology, basic case studies and complex applications, this volume provides researchers with an overview of modeling and computational studies of physiology (i.e. quantitative physiology), which is becoming an increasingly important branch of systems biology. This book aims to build multi-scale models to investigate functions in living systems and explain how biomolecules, cells, organs, organ systems and organisms carry out the chemical or physical functions. Some of the models addressed are related to gene expression, calcium signalling, neural activity, blood dynamics and bone mechanics. Combining theory and practice, with extensive use of MATLAB, this book is designed to establish a paradigm for quantitative physiology by integrating biology, mathematics, physics and informatics etc. To benefit from this book, the readers are expected to have a background in general physiology and mathematics


A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences

A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences

Author: Riccardo Sacco

Publisher: Academic Press

Published: 2019-07-18

Total Pages: 856

ISBN-13: 0128125195

DOWNLOAD EBOOK

A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences provides a systematic methodology to the formulation of problems in biomedical engineering and the life sciences through the adoption of mathematical models based on physical principles, such as the conservation of mass, electric charge, momentum, and energy. It then teaches how to translate the mathematical formulation into a numerical algorithm that is implementable on a computer. The book employs computational models as synthesized tools for the investigation, quantification, verification, and comparison of different conjectures or scenarios of the behavior of a given compartment of the human body under physiological and pathological conditions. - Presents theoretical (modeling), biological (experimental), and computational (simulation) perspectives - Features examples, exercises, and MATLAB codes for further reader involvement - Covers basic and advanced functional and computational techniques throughout the book


The Oxford Handbook of Philosophical Methodology

The Oxford Handbook of Philosophical Methodology

Author: Herman Cappelen

Publisher: Oxford University Press

Published: 2016

Total Pages: 769

ISBN-13: 0199668779

DOWNLOAD EBOOK

This is the most comprehensive book ever published on philosophical methodology. A team of thirty-eight of the world's leading philosophers present original essays on various aspects of how philosophy should be and is done. The first part is devoted to broad traditions and approaches to philosophical methodology (including logical empiricism, phenomenology, and ordinary language philosophy). The entries in the second part address topics in philosophical methodology, such as intuitions, conceptual analysis, and transcendental arguments. The third part of the book is devoted to essays about the interconnections between philosophy and neighbouring fields, including those of mathematics, psychology, literature and film, and neuroscience.