Handbook of Materials Modeling

Handbook of Materials Modeling

Author: Sidney Yip

Publisher: Springer Science & Business Media

Published: 2007-11-17

Total Pages: 2903

ISBN-13: 1402032862

DOWNLOAD EBOOK

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.


Simulations of Charge Transport in Organic Compounds

Simulations of Charge Transport in Organic Compounds

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, t.


Simulations of Charge Transport in Organic Compounds

Simulations of Charge Transport in Organic Compounds

Author: Thorsten Vehoff

Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG

Published: 2010

Total Pages: 176

ISBN-13: 9783838120812

DOWNLOAD EBOOK

To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals and single crystals. The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus realistic transfer integral distributions and their autocorrelations are obtained. In case of organic crystals two descriptions of charge transport, namely semi-classical dynamics (SCD) and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. In KMC one assumes that the wave function is localized on one molecule, while in SCD it is spread over a limited number of neighboring molecules. The results are compared amongst each other and, where available, with experimental data.


Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics

Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics

Author: Bruce J Berne

Publisher: World Scientific

Published: 1998-06-17

Total Pages: 881

ISBN-13: 9814496057

DOWNLOAD EBOOK

The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.


Quantitative Modeling of Charge Transport in Organic Semiconductor Devices

Quantitative Modeling of Charge Transport in Organic Semiconductor Devices

Author: Javier Dacuña Santos

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Organic semiconductors have attracted significant interest in recent years for applications in low-cost and large area electronics; for example, flexible displays and solid state lighting, photovoltaics, biosensors, disposable electronics, and low cost RFID tags. Their unique properties make them compatible with high throughput roll-to-roll printing and low temperature deposition, thus allowing the utilization of inexpensive and flexible substrates. Although some commercial applications, such as organic light emitting diode displays, already exist; organic semiconductors still need further development. The success of organic semiconductors in commercial applications requires a deeper understanding of the factors limiting or degrading their performance. In particular those creating defects that lead to reduction of mobility or creation of electronic traps. Identifying those traps and linking them to their physical origin is therefore an important step forward in the evolution of organic semiconductors. Modeling electrical characteristics is an interesting technique that can be used to understand how processing parameters or other environmental factors affect material and device performance. However, attention must be paid to assess that the model fully describes measured devices in order to obtain reliable parameters estimations. In this thesis a series of models are described that allow to estimate semiconductor properties, such as mobility and trap density, from electrical measurements of thin film transistors and unipolar diodes. First, the analysis of transfer curves from polymeric transistors is used to understand the effect that regioregularity defects, degree of crystallinity, and angular distribution of crystallites have on the electrical properties of the material. Results indicate that none of them play a significant role on the total concentration of trap states. The model is then extended to study the electrical properties in unipolar diodes, in which current is space-charge limited. This particular geometry requires the model to account for diffusion current, asymmetries in the contacts, and non-homogeneities in the semiconductor; three factors that are typically ignored in the literature. A thorough error analysis allows us to estimate the energy range where the trap distribution can be estimated reliably. Finally, defects are induced in a rubrene single-crystals by means of ultra-violet ozone exposure and X-ray irradiation. The models developed in this work are used to determine how different the energetic and spatial signatures of the induced traps are. Oxygen-related states centered around 0.35 eV and spatially located near the surface of the crystal, are generated after ultra-violet ozone exposure. In addition the mobility in the same region is severely affected. X-ray irradiation, in contrast, generates a much broader distribution of traps, with no preferred energy. Surprisingly, the spatial distribution indicates that, even though X-ray are supposed to be absorbed uniformly through the crystal, the induced defects have a higher concentration near the top and bottom surfaces of the crystal.