These proceedings contain papers by some of the world's leading experts in the analytical and numerical modelling of sediment transport, its measurement on site and in the laboratory, river and coastal morphology, and similar issues. These topics are of fundamental importance in many areas (such as the silting or erosion of coasts and rivers, and the design of fluvial or coastal structures) and should consequently be of interest to a wide audience in engineering, geology and related disciplines.
This book contains more than 300 papers presented at the 28th International Conference on Coastal Engineering, held in Cardiff, Wales, in July 2002. It is divided into five parts: coastal waves; nearshore currents, swash, and long waves; coastal structures; sediment transport; and coastal morphology, beach nourishment, and coastal management. The papers cover a broad range of topics, including theory, numerical and physical modeling, field measurements, case studies, design, and management. Coastal Engineering 2002 provides engineers, scientists, and planners with state-of-the-art information on coastal engineering and coastal processes.
This reference for engineers, and graduate students covers sediment transport and morphodynamics modelling in nearshore environments. It presents the fundamentals required for understanding the physics and for setting up numerical models. This book covers hydrodynamics of estuarine and coastal environments, properties of seafloor and estuarine composition, and hydroenvironmental interactions; emphasising the inter-relations of small- and large-scale processes, and short- and large-evolution timescales. The focus is, principally, on the application of shallow-water theory, but some surface wave models, and coupling of shallow-water models with surface waves is also discussed to some extent. The guidance on running regional models and the case studies presented are directed to managed realignment, coastal protection, climate change impacts, and offshore renewables. Key features: Gives a balanced review of this rich interdisciplinary area Bridges practical engineering and research Offers both large- and small-scale application Suits graduate students and researchers as well as consulting engineers Vanesa Magar is a senior researcher and associate professor at the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) in Baja California, Mexico. She was formerly a researcher and then a lecturer at Plymouth University, UK.
The subject of ocean turbulence is in a state of discovery and development with many intellectual challenges. This book describes the principal dynamic processes that control the distribution of turbulence, its dissipation of kinetic energy and its effects on the dispersion of properties such as heat, salinity, and dissolved or suspended matter in the deep ocean, the shallow coastal and the continental shelf seas. It focuses on the measurement of turbulence, and the consequences of turbulent motion in the oceanic boundary layers at the sea surface and near the seabed. Processes are illustrated by examples of laboratory experiments and field observations. The Turbulent Ocean provides an excellent resource for senior undergraduate and graduate courses, as well as an introduction and general overview for researchers. It will be of interest to all those involved in the study of fluid motion, in particular geophysical fluid mechanics, meteorology and the dynamics of lakes.
This book is intended as a useful handbook for professionals and researchers in the areas of Physical Oceanography, Marine Geology, Coastal Geomorphology and Coastal Engineering and as a text for graduate students in these fields. With its emphasis on boundary layer flow and basic sediment transport modelling, it is meant to help fill the gap between general hydrodynamic texts and descriptive texts on marine and coastal sedimentary processes. The book commences with a review of coastal bottom boundary layer flows including the boundary layer interaction between waves and steady currents. The concept of eddy viscosity for these flows is discussed in depth because of its relation to sediment diffusivity. The quasi-steady processes of sediment transport over flat beds are discussed. Small scale coastal bedforms and the corresponding hydraulic roughness are described. The motion of suspended sand particles is studied in detail with emphasis on the possible suspension maintaining mechanisms in coastal flows. Sediment pickup functions are provided for unsteady flows. A new combined convection-diffusion model is provided for suspended sediment distributions. Different methods of sediment transport model building are presented together with some classical models.
This book provides a thorough treatment of both theoretical and observational aspects of the interaction between the sea-floor and the near-sea-floor dynamics; the effect this has on the distribution of internal and seabed stress; and the relevance of the associated dynamics to sedimentation processes. The theoretical work described involved both analytical and numerical modelling studies of a wide range of near-shore and shelf processes. These provide a valuable store of information on the interaction between the sea-floor and the dynamics of the overlying water. The book also includes an account of tidal analysis techniques and how these are being applied in the analysis of tidal current measurements. The observational studies relate to measurements of near-sea-floor turbulence and sand-transport in the littoral zone.