This book proposes a consistent methodology for building intelligent systems. It puts forward several formal models for designing and implementing rules-based systems, and presents illustrative case studies of their applications. These include software engineering, business process systems, Semantic Web, and context-aware systems on mobile devices. Rules offer an intuitive yet powerful method for representing human knowledge, and intelligent systems based on rules have many important applications. However, their practical development requires proper techniques and models - a gap that this book effectively addresses.
Papers direct the focus of interest to the development and use of conceptual models in information systems of various kinds and aim at improving awareness about general or specific problems and solutions in conceptual modelling.
What value does semantic data modeling offer? As an information architect or data science professional, let’s say you have an abundance of the right data and the technology to extract business gold—but you still fail. The reason? Bad data semantics. In this practical and comprehensive field guide, author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft to increase the usability and value of your data and applications. You’ll also explore the pitfalls to avoid and dilemmas to overcome for building high-quality and valuable semantic representations of data. Understand the fundamental concepts, phenomena, and processes related to semantic data modeling Examine the quirks and challenges of semantic data modeling and learn how to effectively leverage the available frameworks and tools Avoid mistakes and bad practices that can undermine your efforts to create good data models Learn about model development dilemmas, including representation, expressiveness and content, development, and governance Organize and execute semantic data initiatives in your organization, tackling technical, strategic, and organizational challenges
Proceedings of the 10th International Conference on Human Interaction and Emerging Technologies, IHIET 2023, August 22-24, 2023, Université Côte d'Azur, Nice, France.
Enterprise Process Management Systems: Engineering Process-Centric Enterprise Systems using BPMN 2.0 proposes a process-centric paradigm to replace the traditional data-centric paradigm for Enterprise Systems (ES)--ES should be reengineered from the present data-centric enterprise architecture to process-centric process architecture to be called as Enterprise Process Management Systems (EPMS). The real significance of business processes can be understood in the context of current heightened priority on digital transformation or digitalization of enterprises. Conceiving the roadmap to realize a digitalized enterprise via the business model innovation becomes amenable only from the process-centric view of the enterprise. This pragmatic book: Introduces Enterprise Process Management Systems (EPMS) solutions that enable an agile enterprise. Describes distributed systems and Service Oriented Architecture (SOA) that paved the road to EPMS. Leverages SOA to explain the cloud-based realization of business processes in terms of Web Services. Describes how BPMN 2.0 addresses the requirements for agility by ensuring a seamless methodological path from process requirements modeling to execution and back (to enable process improvements). Presents the spreadsheet-driven Spreadsheeter Application Development (SAD) methodology for the design and development of process-centric application systems. Describes process improvement programs ranging right from disruptive programs like BPR to continuous improvement programs like lean, six sigma and TOC. Enterprise Process Management Systems: Engineering Process-Centric Enterprise Systems using BPMN 2.0 describes how BPMN 2.0 can not only capture business requirements but it can also provide the backbone of the actual solution implementation. Thus, the same diagram prepared by the business analyst to describe the business’s desired To-Be process can also be used to automate the execution of that process on a modern process engine.
The availability of very large data sets and the increase in computing power to process them has led to a renewed intensity in corporate and governmental use of Artificial Intelligence (AI) technologies. This groundbreaking book, the first devoted entirely to the growing presence of AI in the legal profession, responds to the necessity of building up a discipline that due to its novelty requires the pooling of knowledge and experiences of well-respected experts in the AI field, taking into account the impact of AI on the law and legal practice. Essays by internationally known expert authors introduce the essentials of AI in a straightforward and intelligible style, offering jurists as many practical examples and business cases as possible so that they are able to understand the real application of this technology and its impact on their jobs and lives. Elements of the analysis include the following: crucial terms: natural language processing, machine learning and deep learning; regulations in force in major jurisdictions; ethical and social issues; labour and employment issues, including the impact that robots have on employment; prediction of outcome in the legal field (judicial proceedings, patent granting, etc.); massive analysis of documents and identification of patterns from which to derive conclusions; AI and taxation; issues of competition and intellectual property; liability and responsibility of intelligent systems; AI and cybersecurity; AI and data protection; impact on state tax revenues; use of autonomous killer robots in the military; challenges related to privacy; the need to embrace transparency and sustainability; pressure brought by clients on prices; minority languages and AI; danger that the existing gap between large and small businesses will further increase; how to avoid algorithmic biases when AI decides; AI application to due diligence; AI and non-disclosure agreements; and the role of chatbots. Interviews with pioneers in the field are included, so readers get insights into the issues that people are dealing with in day-to-day actualities. Whether conceiving AI as a transformative technology of the labour market and training or an economic and business sector in need of legal advice, this introduction to AI will help practitioners in tax law, labour law, competition law and intellectual property law understand what AI is, what it serves, what is the state of the art and the potential of this technology, how they can benefit from its advantages and what are the risks it presents. As the global economy continues to suffer the repercussions of a framework that was previously fundamentally self-regulatory, policymakers will recognize the urgent need to formulate rules to properly manage the future of AI.
This book discusses vehicular communication systems, IoT, intelligent transportation systems and the Internet of Vehicles, and also introduces destination marketing in a structured manner. It is primarily intended for research students interested in emerging technologies for connected Internet of Vehicles and intelligent transportation system networks; academics in higher education institutions, including universities and vocational colleges; IT professionals; policy makers; and legislators. The book can also be used as a reference resource for both undergraduate and graduate studies. Written in plain and simple language, it describes new concepts so that they are accessible to readers without prior knowledge of the field.
The two-volume set LNAI 7894 and LNCS 7895 constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane, Poland in June 2013. The 112 revised full papers presented together with one invited paper were carefully reviewed and selected from 274 submissions. The 56 papers included in the second volume are organized in the following topical sections: evolutionary algorithms and their applications; data mining; bioinformatics and medical applications; agent systems, robotics and control; artificial intelligence in modeling and simulation; and various problems of artificial intelligence.
This book constitutes the refereed proceedings of the 12th International Conference on Knowledge Engineering and Knowledge Management, EKAW 2000, held in Juan-les-Pins, France in October 2000. The 28 revised full papers and six revised short papers presented were carefully reviewed and selected from a high number of high-quality submissions. The book offers topical sections on knowledge modeling languages and tools, ontologies, knowledge acquisition from texts, machine learning, knowledge management and electronic commerce, problem solving methods, knowledge representation, validation, evaluation and certification, and methodologies.
These transactions publish research in computer-based methods of computational collective intelligence (CCI) and their applications in a wide range of fields such as the semantic web, social networks, and multi-agent systems. TCCI strives to cover new methodological, theoretical and practical aspects of CCI understood as the form of intelligence that emerges from the collaboration and competition of many individuals (artificial and/or natural). The application of multiple computational intelligence technologies, such as fuzzy systems, evolutionary computation, neural systems, consensus theory, etc., aims to support human and other collective intelligence and to create new forms of CCI in natural and/or artificial systems. This eleventh issue contains 9 carefully selected and thoroughly revised contributions.