Modeling with Differential Equations in Chemical Engineering

Modeling with Differential Equations in Chemical Engineering

Author: Stanley M. Walas

Publisher: Boston : Butterworth-Heinemann

Published: 1991

Total Pages: 474

ISBN-13:

DOWNLOAD EBOOK

'Modelling with Differential Equations in Chemical Engineering' covers the modelling of rate processes of engineering in terms of differential equations. While it includes the purely mathematical aspects of the solution of differential equations, the main emphasis is on the derivation and solution of major equations of engineering and applied science. Methods of solving differential equations by analytical and numerical means are presented in detail with many solved examples, and problems for solution by the reader. Emphasis is placed on numerical and computer methods of solution. A key chapter in the book is devoted to the principles of mathematical modelling. These principles are applied to the equations in important engineering areas. The major disciplines covered are thermodynamics, diffusion and mass transfer, heat transfer, fluid dynamics, chemical reactions, and automatic control. These topics are of particular value to chemical engineers, but also are of interest to mechanical, civil, and environmental engineers, as well as applied scientists. The material is also suitable for undergraduate and beginning graduate students, as well as for review by practising engineers.


A Step by Step Approach to the Modeling of Chemical Engineering Processes

A Step by Step Approach to the Modeling of Chemical Engineering Processes

Author: Liliane Maria Ferrareso Lona

Publisher: Springer

Published: 2017-12-15

Total Pages: 183

ISBN-13: 3319660470

DOWNLOAD EBOOK

This book treats modeling and simulation in a simple way, that builds on the existing knowledge and intuition of students. They will learn how to build a model and solve it using Excel. Most chemical engineering students feel a shiver down the spine when they see a set of complex mathematical equations generated from the modeling of a chemical engineering system. This is because they usually do not understand how to achieve this mathematical model, or they do not know how to solve the equations system without spending a lot of time and effort. Trying to understand how to generate a set of mathematical equations to represent a physical system (to model) and solve these equations (to simulate) is not a simple task. A model, most of the time, takes into account all phenomena studied during a Chemical Engineering course. In the same way, there is a multitude of numerical methods that can be used to solve the same set of equations generated from the modeling, and many different computational languages can be adopted to implement the numerical methods. As a consequence of this comprehensiveness and combinatorial explosion of possibilities, most books that deal with this subject are very extensive and embracing, making need for a lot of time and effort to go through this subject. It is expected that with this book the chemical engineering student and the future chemical engineer feel motivated to solve different practical problems involving chemical processes, knowing they can do that in an easy and fast way, with no need of expensive software.


Linear Mathematical Models In Chemical Engineering

Linear Mathematical Models In Chemical Engineering

Author: Martin Aksel Hjortso

Publisher: World Scientific Publishing Company

Published: 2010-01-15

Total Pages: 524

ISBN-13: 9813107138

DOWNLOAD EBOOK

Latest Edition: Linear Mathematical Models in Chemical Engineering (2nd Edition)Understanding the mathematical modeling of chemical processes is fundamental to the successful career of a researcher in chemical engineering. This book reviews, introduces, and develops the mathematics that is most frequently encountered in sophisticated chemical engineering models.The result of a collaboration between a chemical engineer and a mathematician, both of whom have taught classes on modeling and applied mathematics, the book provides a rigorous and in-depth coverage of chemical engineering model formulation and analysis as well as a text which can serve as an excellent introduction to linear mathematics for engineering students. There is a clear focus in the choice of material, worked examples, and exercises that make it unusually accessible to the target audience. The book places a heavy emphasis on applications to motivate the theory, but simultaneously maintains a high standard of rigor to add mathematical depth and understanding.


Differential Equations As Models In Science And Engineering

Differential Equations As Models In Science And Engineering

Author: Gregory Richard Baker

Publisher: World Scientific Publishing Company

Published: 2016-07-25

Total Pages: 391

ISBN-13: 9814656992

DOWNLOAD EBOOK

This textbook develops a coherent view of differential equations by progressing through a series of typical examples in science and engineering that arise as mathematical models. All steps of the modeling process are covered: formulation of a mathematical model; the development and use of mathematical concepts that lead to constructive solutions; validation of the solutions; and consideration of the consequences. The volume engages students in thinking mathematically, while emphasizing the power and relevance of mathematics in science and engineering. There are just a few guidelines that bring coherence to the construction of solutions as the book progresses through ordinary to partial differential equations using examples from mixing, electric circuits, chemical reactions and transport processes, among others. The development of differential equations as mathematical models and the construction of their solution is placed center stage in this volume.


Numerical Methods and Modeling for Chemical Engineers

Numerical Methods and Modeling for Chemical Engineers

Author: Mark E. Davis

Publisher: Courier Corporation

Published: 2013-11-19

Total Pages: 276

ISBN-13: 0486782328

DOWNLOAD EBOOK

This text introduces the quantitative treatment of differential equations arising from modeling physical phenomena in chemical engineering. Coverage includes recent topics such as ODE-IVPs, emphasizing numerical methods and modeling of 1984-era commercial mathematical software.


Applied Mathematics And Modeling For Chemical Engineers

Applied Mathematics And Modeling For Chemical Engineers

Author: Richard G. Rice

Publisher: John Wiley & Sons

Published: 2012-10-16

Total Pages: 60

ISBN-13: 1118024729

DOWNLOAD EBOOK

This Second Edition of the go-to reference combines the classical analysis and modern applications of applied mathematics for chemical engineers. The book introduces traditional techniques for solving ordinary differential equations (ODEs), adding new material on approximate solution methods such as perturbation techniques and elementary numerical solutions. It also includes analytical methods to deal with important classes of finite-difference equations. The last half discusses numerical solution techniques and partial differential equations (PDEs). The reader will then be equipped to apply mathematics in the formulation of problems in chemical engineering. Like the first edition, there are many examples provided as homework and worked examples.


Non-Local Partial Differential Equations for Engineering and Biology

Non-Local Partial Differential Equations for Engineering and Biology

Author: Nikos I. Kavallaris

Publisher: Springer

Published: 2017-11-28

Total Pages: 310

ISBN-13: 3319679449

DOWNLOAD EBOOK

This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology.


Chemical Engineering Dynamics

Chemical Engineering Dynamics

Author: John Ingham

Publisher: John Wiley & Sons

Published: 2008-02-08

Total Pages: 640

ISBN-13: 3527614222

DOWNLOAD EBOOK

In this book, the modelling of dynamic chemical engineering processes is presented in a highly understandable way using the unique combination of simplified fundamental theory and direct hands-on computer simulation. The mathematics is kept to a minimum, and yet the nearly 100 examples supplied on www.wiley-vch.de illustrate almost every aspect of chemical engineering science. Each example is described in detail, including the model equations. They are written in the modern user-friendly simulation language Berkeley Madonna, which can be run on both Windows PC and Power-Macintosh computers. Madonna solves models comprising many ordinary differential equations using very simple programming, including arrays. It is so powerful that the model parameters may be defined as "sliders", which allow the effect of their change on the model behavior to be seen almost immediately. Data may be included for curve fitting, and sensitivity or multiple runs may be performed. The results can be seen simultaneously on multiple-graph windows or by using overlays. The resultant learning effect of this is tremendous. The examples can be varied to fit any real situation, and the suggested exercises provide practical guidance. The extensive experience of the authors, both in university teaching and international courses, is reflected in this well-balanced presentation, which is suitable for the teacher, the student, the chemist or the engineer. This book provides a greater understanding of the formulation and use of mass and energy balances for chemical engineering, in a most stimulating manner. This book is a third edition, which also includes biological, environmental and food process examples.


A First Course in Differential Equations, Modeling, and Simulation

A First Course in Differential Equations, Modeling, and Simulation

Author: Carlos A. Smith

Publisher: CRC Press

Published: 2011-05-18

Total Pages: 344

ISBN-13: 1439850887

DOWNLOAD EBOOK

Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for