Modeling Time in Computing

Modeling Time in Computing

Author: Carlo A. Furia

Publisher: Springer Science & Business Media

Published: 2012-10-19

Total Pages: 430

ISBN-13: 3642323316

DOWNLOAD EBOOK

Models that include a notion of time are ubiquitous in disciplines such as the natural sciences, engineering, philosophy, and linguistics, but in computing the abstractions provided by the traditional models are problematic and the discipline has spawned many novel models. This book is a systematic thorough presentation of the results of several decades of research on developing, analyzing, and applying time models to computing and engineering. After an opening motivation introducing the topics, structure and goals, the authors introduce the notions of formalism and model in general terms along with some of their fundamental classification criteria. In doing so they present the fundamentals of propositional and predicate logic, and essential issues that arise when modeling time across all types of system. Part I is a summary of the models that are traditional in engineering and the natural sciences, including fundamental computer science: dynamical systems and control theory; hardware design; and software algorithmic and complexity analysis. Part II covers advanced and specialized formalisms dealing with time modeling in heterogeneous software-intensive systems: formalisms that share finite state machines as common “ancestors”; Petri nets in many variants; notations based on mathematical logic, such as temporal logic; process algebras; and “dual-language approaches” combining two notations with different characteristics to model and verify complex systems, e.g., model-checking frameworks. Finally, the book concludes with summarizing remarks and hints towards future developments and open challenges. The presentation uses a rigorous, yet not overly technical, style, appropriate for readers with heterogeneous backgrounds, and each chapter is supplemented with detailed bibliographic remarks and carefully chosen exercises of varying difficulty and scope. The book is aimed at graduate students and researchers in computer science, while researchers and practitioners in other scientific and engineering disciplines interested in time modeling with a computational flavor will also find the book of value, and the comparative and conceptual approach makes this a valuable introduction for non-experts. The authors assume a basic knowledge of calculus, probability theory, algorithms, and programming, while a more advanced knowledge of automata, formal languages, and mathematical logic is useful.


Modeling Time in Computing

Modeling Time in Computing

Author: Carlo A. Furia

Publisher: Springer Science & Business Media

Published: 2012-10-19

Total Pages: 430

ISBN-13: 3642323324

DOWNLOAD EBOOK

Models that include a notion of time are ubiquitous in disciplines such as the natural sciences, engineering, philosophy, and linguistics, but in computing the abstractions provided by the traditional models are problematic and the discipline has spawned many novel models. This book is a systematic thorough presentation of the results of several decades of research on developing, analyzing, and applying time models to computing and engineering. After an opening motivation introducing the topics, structure and goals, the authors introduce the notions of formalism and model in general terms along with some of their fundamental classification criteria. In doing so they present the fundamentals of propositional and predicate logic, and essential issues that arise when modeling time across all types of system. Part I is a summary of the models that are traditional in engineering and the natural sciences, including fundamental computer science: dynamical systems and control theory; hardware design; and software algorithmic and complexity analysis. Part II covers advanced and specialized formalisms dealing with time modeling in heterogeneous software-intensive systems: formalisms that share finite state machines as common “ancestors”; Petri nets in many variants; notations based on mathematical logic, such as temporal logic; process algebras; and “dual-language approaches” combining two notations with different characteristics to model and verify complex systems, e.g., model-checking frameworks. Finally, the book concludes with summarizing remarks and hints towards future developments and open challenges. The presentation uses a rigorous, yet not overly technical, style, appropriate for readers with heterogeneous backgrounds, and each chapter is supplemented with detailed bibliographic remarks and carefully chosen exercises of varying difficulty and scope. The book is aimed at graduate students and researchers in computer science, while researchers and practitioners in other scientific and engineering disciplines interested in time modeling with a computational flavor will also find the book of value, and the comparative and conceptual approach makes this a valuable introduction for non-experts. The authors assume a basic knowledge of calculus, probability theory, algorithms, and programming, while a more advanced knowledge of automata, formal languages, and mathematical logic is useful.


[email protected]

Models@run.time

Author: Nelly Bencomo

Publisher: Springer

Published: 2014-07-18

Total Pages: 319

ISBN-13: 9783319089140

DOWNLOAD EBOOK

Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on [email protected] held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.


Modeling with Data

Modeling with Data

Author: Ben Klemens

Publisher: Princeton University Press

Published: 2008-10-06

Total Pages: 471

ISBN-13: 1400828740

DOWNLOAD EBOOK

Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods. Klemens's accessible survey describes these models in a unified and nontraditional manner, providing alternative ways of looking at statistical concepts that often befuddle students. The book includes nearly one hundred sample programs of all kinds. Links to these programs will be available on this page at a later date. Modeling with Data will interest anyone looking for a comprehensive guide to these powerful statistical tools, including researchers and graduate students in the social sciences, biology, engineering, economics, and applied mathematics.


Real-time Systems

Real-time Systems

Author: Dan Ionescu

Publisher: World Scientific

Published: 2007

Total Pages: 503

ISBN-13: 981024424X

DOWNLOAD EBOOK

This book collects the research work of leading-edge researchers and practitioners in the areas of analysis, synthesis, design and implementation of real-time systems with applications in various industrial fields. Their works are grouped into six parts, together encompassing twenty chapters. Each part is devoted to a mainstream subject, the chapters therein developing one of the major aspects of real-time system theory, modeling, design, and practical applications. Starting with a general approach in the area of formalization of real-time systems, and setting the foundations for a general systemic theory of those systems, the book covers everything from building modeling frameworks for various types of real-time systems, to verification, and synthesis. Other parts of the book deal with subjects related to tools and applications of these systems. A special part is dedicated to languages used for their modeling and design. The applications presented in the book reveal precious insights into practitioners' secrets.


Real-Time Massive Model Rendering

Real-Time Massive Model Rendering

Author: Sung-eui Yoon

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 112

ISBN-13: 3031795318

DOWNLOAD EBOOK

Interactive display and visualization of large geometric and textured models is becoming a fundamental capability. There are numerous application areas, including games, movies, CAD, virtual prototyping, and scientific visualization. One of observations about geometric models used in interactive applications is that their model complexity continues to increase because of fundamental advances in 3D modeling, simulation, and data capture technologies. As computing power increases, users take advantage of the algorithmic advances and generate even more complex models and data sets. Therefore, there are many cases where we are required to visualize massive models that consist of hundreds of millions of triangles and, even, billions of triangles. However, interactive visualization and handling of such massive models still remains a challenge in computer graphics and visualization. In this monograph we discuss various techniques that enable interactive visualization of massive models. These techniques include visibility computation, simplification, levels-of-detail, and cache-coherent data management.We believe that the combinations of these techniques can make it possible to interactively visualize massive models in commodity hardware. Table of Contents: Introduction / Visibility / Simplification and Levels of Detail / Alternative Representations / Cache-Coherent Data Management / Conclusions / Bibliography


Systems Modeling and Computer Simulation

Systems Modeling and Computer Simulation

Author: Naim A. Kheir

Publisher:

Published: 1988

Total Pages: 742

ISBN-13:

DOWNLOAD EBOOK

This second edition describes the fundamentals of modelling and simulation of continuous-time, discrete time, discrete-event and large-scale systems. Coverage new to this edition includes: a chapter on non-linear systems analysis and modelling, complementing the treatment of of continuous-time and discrete-time systems; and a chapter on the computer animation and visualization of dynamical systems motion.;College or university bookstores may order five or more copies at a special student price, available on request from Marcel Dekker Inc.


Just-in-Time Scheduling

Just-in-Time Scheduling

Author: Joanna Jozefowska

Publisher: Springer Science & Business Media

Published: 2007-08-08

Total Pages: 266

ISBN-13: 038771717X

DOWNLOAD EBOOK

As supply chain management has matured, maintaining the precise flow of goods to manage schedules (and minimize inventories) on a just-in-time basis still presents major challenges. This has inspired an array of models and algorithms to help ensure the precise flow of components and final products into inventories to meet just-in-time requirements. This is the first survey of the theoretical work on computer systems models and algorithms utilized in just-in-time scheduling.