Modeling of Flow Transition Using an Intermittency Transport Equation
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Published: 2018-06-03
Total Pages: 34
ISBN-13: 9781720628866
DOWNLOAD EBOOKA new transport equation for intermittency factor is proposed to model transitional flows. The intermittent behavior of the transitional flows is incorporated into the computations by modifying the eddy viscosity, mu(sub t), obtainable from a turbulence model, with the intermittency factor, gamma: mu(sub t, sup *) = gamma.mu(sub t). In this paper, Menter's SST model (Menter, 1994) is employed to compute mu(sub t) and other turbulent quantities. The proposed intermittency transport equation can be considered as a blending of two models - Steelant and Dick (1996) and Cho and Chung (1992). The former was proposed for near-wall flows and was designed to reproduce the streamwise variation of the intermittency factor in the transition zone following Dhawan and Narasimha correlation (Dhawan and Narasimha, 1958) and the latter was proposed for free shear flows and was used to provide a realistic cross-stream variation of the intermittency profile. The new model was used to predict the T3 series experiments assembled by Savill (1993a, 1993b) including flows with different freestream turbulence intensities and two pressure-gradient cases. For all test cases good agreements between the computed results and the experimental data are observed.Suzen, Y. B. and Huang, P. G.Glenn Research CenterINTERMITTENCY; TRANSPORT THEORY; EDDY VISCOSITY; TURBULENT FLOW; TURBULENCE MODELS; NAVIER-STOKES EQUATION; PRESSURE GRADIENTS; SHEAR FLOW; WALL FLOW; TRANSITION FLOW