A lot of recent developments have been made about adhesively bonded joints modeling using various methods of analysis. The increasing application of adhesives in industry is partly due to the increased sophistication and reliability of adhesive joints modeling. The book proposed intends to provide the designer with the most advanced stress analyses techniques in adhesive joints to reinforce the use of this promising bonding technique.
This book deals with the most recent numerical modeling of adhesive joints. Advances in damage mechanics and extended finite element method are described in the context of the Finite Element method with examples of application. The book also introduces the classical continuum mechanics and fracture mechanics approach and discusses the boundary element method and the finite difference method with indication of the cases they are most adapted to. At the moment there a no numerical technique that can solve any problem and the analyst needs to be aware of the limitations involved in each case.
The intention of this book is that it should contain everything an engineer needs to know to be able to design and produce adhesively bonded joints which are required to carry significant loads. The advan tages and disadvantages of bonding are given, together with a sufficient understanding of the necessary mechanics and chemistry to enable the designer to make a sound engineering judgement in any particular case. The stresses in joints are discussed extensively so that the engineer can get sufficient philosophy or feel for them, or can delve more deeply into the mathematics to obtain quantitative solutions even with elasto plastic behaviour. A critical description is given of standard methods of testing adhesives, both destructively and non-destructively. The essen tial chemistry of adhesives and the importance of surface preparation are described and guidance is given for adhesive selection by me ans of check lists. For many applications, there will not be a unique adhesive which alone is suitable, and factors such as cost, convenience, produc tion considerations or familiarity may be decisive. A list of applications is given as examples. The authors wish to increase the confidence of engineers using adhesive bonding in load-bearing applications by the information and experience presented. With increasing experience of adhesives en gineering, design will become more elegant as weH as more fitted to its products.
Adhesively-bonded joints provide many advantages over conventional mechanical fasteners and are increasingly receiving attention as an alternative to mechanical joints in engineering applications. The traditional fasteners usually result in the cutting of fibers and hence the introduction of stress concentrations, both of which reduce structural integrity. By contrast, bonded joints are more continuous and have potential advantages of strength-to-weight ratio, design flexibility, and ease of fabrication. This book provides an overview of available analytical methods as well as numerical methods.
A comprehensive introduction to the concepts of joining technologies for hybrid structures This book introduces the concepts of joining technology for polymer-metal hybrid structures by addressing current and new joining methods. This is achieved by using a balanced approach focusing on the scientific features (structural, physical, chemical, and metallurgical/polymer science phenomena) and engineering properties (mechanical performance, design, applications, etc.) of the currently available and new joining processes. It covers such topics as mechanical fastening, adhesive bonding, advanced joining methods, and statistical analysis in joining technology. Joining of Polymer-Metal Hybrid Structures: Principles and Applications is structured by joining principles, in adhesion-based, mechanical fastened, and direct-assembly methods. The book discusses such recent technologies as friction riveting, friction spot joining and ultrasonic joining. This is used for applications where the original base material characteristics must remain unchanged. Additional sections cover the main principles of statistical analysis in joining technology (illustrated with examples from the field of polymer-metal joining). Joining methods discussed include mechanical fastening (bolting, screwing, riveting, hinges, and fits of polymers and composites), adhesive bonding, and other advanced joining methods (friction staking, laser welding, induction welding, etc.). Provides a combined engineering and scientific approach used to describe principles, properties, and applications of polymer-metal hybrid joints Describes the current developments in design of experiments and statistical analysis in joining technology with emphasis on joining of polymer-metal hybrid structures Covers recent innovations in joining technology of polymer-metal hybrid joints including friction riveting, friction spot joining, friction staking, and ultrasonic joining Principles illustrated by pictures, 3D-schemes, charts, and drawings using examples from the field of polymer-metal joining Joining of Polymer-Metal Hybrid Structures: Principles and Applications will appeal to chemical, polymer, materials, metallurgical, composites, mechanical, process, product, and welding engineers, scientists and students, technicians, and joining process professionals.
Scientific background and practical methods for modeling adhered joints Tools for analyzing stress, fracture, fatigue crack propagation, thermal, diffusion and coupled thermal-stress/diffusion-stress, as well as life prediction of joints Book includes access to downloadable macrofiles for ANSYS This text investigates the mechanics of adhesively bonded composite and metallic joints using finite element analysis, and more specifically, ANSYS, the basics of which are presented. The book provides engineers and scientists with the technical know-how to simulate a variety of adhesively bonded joints using ANSYS. It explains how to model stress, fracture, fatigue crack propagation, thermal, diffusion and coupled field analysis of the following: single lap, double lap, lap strap/cracked lap shear, butt and cantilevered beam joints. Readers receive free digital access to a variety of input and program data, which can be downloaded as macrofiles for modeling with ANSYS.
This volume features fundamental research and applications in the field of the design and application of engineering materials, predominantly within the context of mechanical engineering applications. This includes a wide range of materials engineering and technology, including metals, e.g., polymers, composites, and ceramics. Advanced applications would include manufacturing in the new or newer materials, testing methods, multi-scale experimental and computational aspects. This book features fundamental research and applications in the design of engineering materials, predominantly within the context of mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. It covers a wide range of materials, including metals, polymers, composites, and ceramics. Advanced applications include the manufacturing of new materials, testing methods, multi-scale experimental and computational aspects. p>
Joining techniques such as welding, brazing, riveting and screwing are used by industry all over the world on a daily basis. A further method of joining has also proven to be highly successful: adhesive bonding. Adhesive bonding technology has an extremely broad range of applications. And it is difficult to imagine a product - in the home, in industry, in transportation, or anywhere else for that matter - that does not use adhesives or sealants in some manner. The book focuses on the methodology used for fabricating and testing adhesive and bonded joint specimens. The text covers a wide range of test methods that are used in the field of adhesives, providing vital information for dealing with the range of adhesive properties that are of interest to the adhesive community. With contributions from many experts in the field, the entire breadth of industrial laboratory examples, utilizing different best practice techniques are discussed. The core concept of the book is to provide essential information vital for producing and characterizing adhesives and adhesively bonded joints.
This single-source reference is designed for anyone who is responsible for selecting the bestsurface treatment and a compatible adhesive for a particular design.Filled with over 300 photos, figures, and tables, Adhesive Bonding of Aluminum Alloyspresents clear analytical methods for examining the adequacy of bonded joints ... methodsfor chemical analysis of an adhesive and primer ... specific instructions on how to anodizealuminum alloys for three different surface treatments .. . recommended primers foranodized alloys ... examples that help you verify fail-safe capacity ... and more.In addition, this guide gives you the latest chemical analysis methods for control, proventest procedures for mechanical durability properties, a wide selection of nondestructive inspectionprocedures, and numerous surface analysis methods.Adhesive Bonding of Aluminum Alloys can be of immediate assistance to materials, mechanical, design, process, manufacturing, automotive, aeronautical, corrosion, and maintenanceengineers; designers and manufacturers of primary and secondary aluminum structures;adhesive scientists; testing and material specialists; and upper-division undergraduateand graduate-level researchers in materials, aeronautical design, and adhesive science
The growing use of composites over metals for structural applications has made a thorough understanding of the behaviour of composite joints in various applications essential for engineers, but has also presented them with a new set of problems. Composite joints and connections addresses these differences and explores the design, modelling and testing of bonded and bolted joints and connections.Part one discusses bolted joints whilst part two examines bonded joints. Chapters review reinforcement techniques and applications for composite bolted and bonded joints and investigate the causes and effects of fatigue and stress on both types of joint in various applications and environments. Topics in part one include metal hybridization, glass-reinforced aluminium (GLARE), hybrid fibre metal laminates (FML), glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP) composites. Topics in part two include calculation of strain energy release rates, simulating fracture and fatigue failure using cohesive zone models, marine and aerospace applications, advanced modelling, stress analysis of bonded patches and scarf repairs.Composite joints and connections is a valuable reference for composite manufacturers and composite component fabricators, the aerospace, automotive, shipbuilding and civil engineering industries and for anyone involved in the joining and repair of composite structures. - Explores the design, modelling and testing of bonded and bolted joints and connections - Reviews reinforcement techniques and applications for composite bolted and bonded joints - Investigates the causes and effects of fatigue and stress on bolted and bonded joints in various applications and environments