This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. It will thus be required reading for engineers, statisticians and computer scientists of all kinds. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover numerous topics in detail, including the synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals.
An introduction to the use of probability models for analyzing risk and economic decisions, using spreadsheets to represent and simulate uncertainty. This textbook offers an introduction to the use of probability models for analyzing risks and economic decisions. It takes a learn-by-doing approach, teaching the student to use spreadsheets to represent and simulate uncertainty and to analyze the effect of such uncertainty on an economic decision. Students in applied business and economics can more easily grasp difficult analytical methods with Excel spreadsheets. The book covers the basic ideas of probability, how to simulate random variables, and how to compute conditional probabilities via Monte Carlo simulation. The first four chapters use a large collection of probability distributions to simulate a range of problems involving worker efficiency, market entry, oil exploration, repeated investment, and subjective belief elicitation. The book then covers correlation and multivariate normal random variables; conditional expectation; optimization of decision variables, with discussions of the strategic value of information, decision trees, game theory, and adverse selection; risk sharing and finance; dynamic models of growth; dynamic models of arrivals; and model risk. New material in this second edition includes two new chapters on additional dynamic models and model risk; new sections in every chapter; many new end-of-chapter exercises; and coverage of such topics as simulation model workflow, models of probabilistic electoral forecasting, and real options. The book comes equipped with Simtools, an open-source, free software used througout the book, which allows students to conduct Monte Carlo simulations seamlessly in Excel.
Organizations make thousands of automated, operational decisions every week. How well they make these decisions drives profitability, reputation and customer satisfaction. Decision modeling helps them understand, automate and improve them
In financially constrained health systems across the world, increasing emphasis is being placed on the ability to demonstrate that health care interventions are not only effective, but also cost-effective. This book deals with decision modelling techniques that can be used to estimate the value for money of various interventions including medical devices, surgical procedures, diagnostic technologies, and pharmaceuticals. Particular emphasis is placed on the importance of the appropriate representation of uncertainty in the evaluative process and the implication this uncertainty has for decision making and the need for future research. This highly practical guide takes the reader through the key principles and approaches of modelling techniques. It begins with the basics of constructing different forms of the model, the population of the model with input parameter estimates, analysis of the results, and progression to the holistic view of models as a valuable tool for informing future research exercises. Case studies and exercises are supported with online templates and solutions. This book will help analysts understand the contribution of decision-analytic modelling to the evaluation of health care programmes. ABOUT THE SERIES: Economic evaluation of health interventions is a growing specialist field, and this series of practical handbooks will tackle, in-depth, topics superficially addressed in more general health economics books. Each volume will include illustrative material, case histories and worked examples to encourage the reader to apply the methods discussed, with supporting material provided online. This series is aimed at health economists in academia, the pharmaceutical industry and the health sector, those on advanced health economics courses, and health researchers in associated fields.
This book constitutes the proceedings of the 12th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2015, held in Skövde, Sweden, in September 2015. The 18 revised full papers presented were carefully reviewed and selected from 38 submissions. They discuss theory and tools for modeling decisions, as well as applications that encompass decision making processes and information fusion techniques.
This book constitutes the refereed proceedings of the Third International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2006, held in Tarragona, Spain, in April 2006. The 31 revised full papers presented together with 4 invited lectures were thoroughly reviewed and selected from 97 submissions. The papers are devoted to theory and tools for modeling decisions, as well as applications that encompass decision making processes and information fusion techniques.
Combines topics from two traditionally distinct quantitative subjects, probability/statistics and management science/optimization, in a unified treatment of quantitative methods and models for management. Stresses those fundamental concepts that are most important for the practical analysis of management decisions: modeling and evaluating uncertainty explicitly, understanding the dynamic nature of decision-making, using historical data and limited information effectively, simulating complex systems, and allocating scarce resources optimally.
Decision modeling is a key area in the developing field of AI, and this timely work connects researchers and professionals with the very latest research. It constitutes the refereed proceedings of the 4th International Conference on Modeling Decisions for Artificial Intelligence, held in Kitakyushu, Japan, in August 2007. The 42 revised full papers presented together with 4 invited lectures are devoted to theory and tools, as well as applications.
This book constitutes the proceedings of the 6th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2009, held on Awaji Island, Japan, in November/December 2009. The 28 papers presented in this book together with 5 invited talks were carefully reviewed and selected from 61 submissions. The topics covered are aggregation operators, fuzzy measures and game theory; decision making; clustering and similarity; computational intelligence and optimization; and machine learning.
This book is about marketing models and the process of model building. Our primary focus is on models that can be used by managers to support marketing decisions. It has long been known that simple models usually outperform judgments in predicting outcomes in a wide variety of contexts. For example, models of judgments tend to provide better forecasts of the outcomes than the judgments themselves (because the model eliminates the noise in judgments). And since judgments never fully reflect the complexities of the many forces that influence outcomes, it is easy to see why models of actual outcomes should be very attractive to (marketing) decision makers. Thus, appropriately constructed models can provide insights about structural relations between marketing variables. Since models explicate the relations, both the process of model building and the model that ultimately results can improve the quality of marketing decisions. Managers often use rules of thumb for decisions. For example, a brand manager will have defined a specific set of alternative brands as the competitive set within a product category. Usually this set is based on perceived similarities in brand characteristics, advertising messages, etc. If a new marketing initiative occurs for one of the other brands, the brand manager will have a strong inclination to react. The reaction is partly based on the manager's desire to maintain some competitive parity in the mar keting variables.