This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
This book is intended to be a useful contribution for the modern teaching of applied mathematics, educating Industrial Mathematicians that will meet the growing demand for such experts. It covers many applications where mathematics play a fundamental role, from biology, telecommunications, medicine, physics, finance and industry. It is presented in such a way that can be useful in Modelation, Simulation and Optimization courses, targeting master and PhD students. Its content is based on many editions from the successful series of Modelling Weeks organized by the European Consortium of Mathematics in Industry (ECMI). Each chapter addresses a particular problem, and is written in a didactic way, providing the description of the problem, the particular way of approaching it and the proposed solution, along with the results obtained.
Hemodynamic computations represent a state-of-the-art approach for patient-specific assessment of cardiovascular pathologies. The book presents the development of reduced-order multiscale hemodynamic models for coronary artery disease, aortic coarctation and whole body circulation, which can be applied in routine clinical settings for personalized diagnosis. Specific parameter estimation frameworks are introduced for calibrating the parameters of the models and high performance computing solutions are employed to reduce their execution time. The personalized computational models are validated against patient-specific measurements. The book is written for scientists in the field of biomedical engineering focusing on the cardiovascular system, as well as for research-oriented physicians in cardiology and industrial players in the field of healthcare technologies.