Modeling of Complex Systems: An Introduction describes the framework of complex systems. This book discusses the language of system theory, taxonomy of system concepts, steps in model building, and establishing relations using physical laws. The statistical attributes of data, generation of random numbers fundamental problems of recognition, and input-output type models are also elaborated. This text likewise covers the optimization with equality constraints, transfer function models, and competition among species. This publication is written primarily for senior undergraduate students and beginning graduate students who are interested in an interdisciplinary or multidisciplinary approach to large-scale or complex problems of contemporary societal interest.
This book contains all refereed papers accepted during the tenth edition of the conference that took place at the Cité Internationale Universitaire de Paris on December 12-13, 2019. Mastering complex systems requires an integrated understanding of industrial practices as well as sophisticated theoretical techniques and tools. This explains the creation of an annual go-between forum in Paris dedicated to academic researchers & industrial actors working on complex industrial systems architecture, modeling & engineering. These proceedings cover the most recent trends in the emerging field of Complex Systems, both from an academic and a professional perspective. A special focus is put on “Systems Engineering through the ages”. The CSD&M Paris 2019 conference is organized under the guidance of CESAM Community. It has been developed since 2010 by the non-profit organization CESAMES Association to organize the sharing of good practices in Enterprise and Systems Architecture and to certify the level of knowledge and proficiency in this field through CESAM certification.
"Malik demonstrates that management and management theory have strong foundations in systems science, and most specifically in a certain type of cybernetics of truly complex systems, of organismic, self-organizing, and evolving systems. This book provides the basics on how to create robust, functional, and sustainably viable systems. One of the reasons why it has become a classic on management cybernetics, now in its 11th edition, is that the strategies and heuristic principles of complexity management are still relevant - now more than ever."--Back cover.
Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the “General Reference Model for Agent-based Modeling and Simulation” (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models –from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hardware resources in an optimized fashion.
A comprehensive text that reviews the methods and technologies that explore emergent behavior in complex systems engineering in multidisciplinary fields In Emergent Behavior in Complex Systems Engineering, the authors present the theoretical considerations and the tools required to enable the study of emergent behaviors in manmade systems. Information Technology is key to today’s modern world. Scientific theories introduced in the last five decades can now be realized with the latest computational infrastructure. Modeling and simulation, along with Big Data technologies are at the forefront of such exploration and investigation. The text offers a number of simulation-based methods, technologies, and approaches that are designed to encourage the reader to incorporate simulation technologies to further their understanding of emergent behavior in complex systems. The authors present a resource for those designing, developing, managing, operating, and maintaining systems, including system of systems. The guide is designed to help better detect, analyse, understand, and manage the emergent behaviour inherent in complex systems engineering in order to reap the benefits of innovations and avoid the dangers of unforeseen consequences. This vital resource: Presents coverage of a wide range of simulation technologies Explores the subject of emergence through the lens of Modeling and Simulation (M&S) Offers contributions from authors at the forefront of various related disciplines such as philosophy, science, engineering, sociology, and economics Contains information on the next generation of complex systems engineering Written for researchers, lecturers, and students, Emergent Behavior in Complex Systems Engineering provides an overview of the current discussions on complexity and emergence, and shows how systems engineering methods in general and simulation methods in particular can help in gaining new insights in complex systems engineering.
This title brings together frontier research on complex economic systems, heterogeneous interacting agents, bounded rationality, and nonlinear dynamics in economics. The book contains the proceedings of the CEF2015 (21st Computing in Economics in Finance), held 20-22 June 2015 in Taipei, Taiwan, and addresses some of the important driving forces for various emergent properties in economies, when viewed as complex systems. The breakthroughs reported in this book are a result of an interdisciplinary approach and simulation remains the unifying theme for these papers as they deal with a wide range of topics in economics. The text is a valuable addition to the efforts in promoting the complex systems view in economic science. The computational experiments reported in the book are both transparent and replicable. Complex System Modeling and Simulation in Economics and Finance is useful for graduate courses of complex systems, with particular focus on economics and finance. At the same time it serves as a good overview for researchers who are interested in the topic.
THE PROJECT MANAGEMENT CLASSIC-REVISED AND EXPANDED Now Includes Downloadable Forms and Worksheets Projects are becoming the heart of business. This comprehensive revision of the bestselling guide to project management explains the processes, practices, and management techniques you need to implement a successful project culture within your team and enterprise. Visualizing Project Management simplifies the challenge of managing complex projects with powerful, visual models that have been adopted by more than 100 leading government and private organizations. In this new Third Edition, the authors-leading thinkers and practitioners in the field-keep you on the cutting edge with a sophisticated approach that integrates project management, systems engineering, and process improvement. This advanced content can help take your career and your organization well beyond the fundamentals. New, downloadable forms, templates, and worksheets make it easy to implement powerful project techniques and tools. Includes references to the Project Management Institute Body of Knowledge and the INCOSE Handbook to help you pass: The Project Management Professional Certification Exam The INCOSE Systems Engineer Certification Exam (CSEP) "I recommend this book to all those who aspire to project management [and] those who must supervise it." —Norman R. Augustine, former chairman and CEO Lockheed Martin Corporation "The importance of this excellent book, able to encompass these two key disciplines [systems engineering and project management], cannot be overemphasized." —Heinz Stoewer, President, INCOSE
This book is devoted to modeling of multi-level complex systems, a challenging domain for engineers, researchers and entrepreneurs, confronted with the transition from learning and adaptability to evolvability and autonomy for technologies, devices and problem solving methods. Chapter 1 introduces the multi-scale and multi-level systems and highlights their presence in different domains of science and technology. Methodologies as, random systems, non-Archimedean analysis, category theory and specific techniques as model categorification and integrative closure, are presented in chapter 2. Chapters 3 and 4 describe polystochastic models, PSM, and their developments. Categorical formulation of integrative closure offers the general PSM framework which serves as a flexible guideline for a large variety of multi-level modeling problems. Focusing on chemical engineering, pharmaceutical and environmental case studies, the chapters 5 to 8 analyze mixing, turbulent dispersion and entropy production for multi-scale systems. Taking inspiration from systems sciences, chapters 9 to 11 highlight multi-level modeling potentialities in formal concept analysis, existential graphs and evolvable designs of experiments. Case studies refer to separation flow-sheets, pharmaceutical pipeline, drug design and development, reliability management systems, security and failure analysis. Perspectives and integrative points of view are discussed in chapter 12. Autonomous and viable systems, multi-agents, organic and autonomic computing, multi-level informational systems, are revealed as promising domains for future applications. Written for: engineers, researchers, entrepreneurs and students in chemical, pharmaceutical, environmental and systems sciences engineering, and for applied mathematicians.
This volume describes frontiers in social-behavioral modeling for contexts as diverse as national security, health, and on-line social gaming. Recent scientific and technological advances have created exciting opportunities for such improvements. However, the book also identifies crucial scientific, ethical, and cultural challenges to be met if social-behavioral modeling is to achieve its potential. Doing so will require new methods, data sources, and technology. The volume discusses these, including those needed to achieve and maintain high standards of ethics and privacy. The result should be a new generation of modeling that will advance science and, separately, aid decision-making on major social and security-related subjects despite the myriad uncertainties and complexities of social phenomena. Intended to be relatively comprehensive in scope, the volume balances theory-driven, data-driven, and hybrid approaches. The latter may be rapidly iterative, as when artificial-intelligence methods are coupled with theory-driven insights to build models that are sound, comprehensible and usable in new situations. With the intent of being a milestone document that sketches a research agenda for the next decade, the volume draws on the wisdom, ideas and suggestions of many noted researchers who draw in turn from anthropology, communications, complexity science, computer science, defense planning, economics, engineering, health systems, medicine, neuroscience, physics, political science, psychology, public policy and sociology. In brief, the volume discusses: Cutting-edge challenges and opportunities in modeling for social and behavioral science Special requirements for achieving high standards of privacy and ethics New approaches for developing theory while exploiting both empirical and computational data Issues of reproducibility, communication, explanation, and validation Special requirements for models intended to inform decision making about complex social systems
The current literature on dynamic systems is quite comprehensive, and system theory’s mathematical jargon can remain quite complicated. Thus, there is a need for a compendium of accessible research that involves the broad range of fields that dynamic systems can cover, including engineering, life sciences, and the environment, and which can connect researchers in these fields. The Handbook of Research on Modeling, Analysis, and Control of Complex Systems is a comprehensive reference book that describes the recent developments in a wide range of areas including the modeling, analysis, and control of dynamic systems, as well as explores related applications. The book acts as a forum for researchers seeking to understand the latest theory findings and software problem experiments. Covering topics that include chaotic maps, predictive modeling, random bit generation, and software bug prediction, this book is ideal for professionals, academicians, researchers, and students in the fields of electrical engineering, computer science, control engineering, robotics, power systems, and biomedical engineering.