Introduction to Modeling and Analysis of Stochastic Systems

Introduction to Modeling and Analysis of Stochastic Systems

Author: V. G. Kulkarni

Publisher: Springer

Published: 2012-12-27

Total Pages: 313

ISBN-13: 9781461427353

DOWNLOAD EBOOK

This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.


Stochastic Modeling

Stochastic Modeling

Author: Barry L. Nelson

Publisher: Courier Corporation

Published: 2012-10-11

Total Pages: 338

ISBN-13: 0486139948

DOWNLOAD EBOOK

Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.


Stochastic Analysis, Stochastic Systems, and Applications to Finance

Stochastic Analysis, Stochastic Systems, and Applications to Finance

Author: Allanus Hak-Man Tsoi

Publisher: World Scientific

Published: 2011

Total Pages: 274

ISBN-13: 9814355712

DOWNLOAD EBOOK

Pt. I. Stochastic analysis and systems. 1. Multidimensional Wick-Ito formula for Gaussian processes / D. Nualart and S. Ortiz-Latorre. 2. Fractional white noise multiplication / A.H. Tsoi. 3. Invariance principle of regime-switching diffusions / C. Zhu and G. Yin -- pt. II. Finance and stochastics. 4. Real options and competition / A. Bensoussan, J.D. Diltz and S.R. Hoe. 5. Finding expectations of monotone functions of binary random variables by simulation, with applications to reliability, finance, and round robin tournaments / M. Brown, E.A. Pekoz and S.M. Ross. 6. Filtering with counting process observations and other factors : applications to bond price tick data / X. Hu, D.R. Kuipers and Y. Zeng. 7. Jump bond markets some steps towards general models in applications to hedging and utility problems / M. Kohlmann and D. Xiong. 8. Recombining tree for regime-switching model : algorithm and weak convergence / R.H. Liu. 9. Optimal reinsurance under a jump diffusion model / S. Luo. 10. Applications of counting processes and martingales in survival analysis / J. Sun. 11. Stochastic algorithms and numerics for mean-reverting asset trading / Q. Zhang, C. Zhuang and G. Yin


Modelling and Application of Stochastic Processes

Modelling and Application of Stochastic Processes

Author: Uday B. Desai

Publisher: Springer Science & Business Media

Published: 1986-10-31

Total Pages: 310

ISBN-13: 9780898381771

DOWNLOAD EBOOK

The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).


An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling

Author: Howard M. Taylor

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 410

ISBN-13: 1483269272

DOWNLOAD EBOOK

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.


Linear Stochastic Systems

Linear Stochastic Systems

Author: Anders Lindquist

Publisher: Springer

Published: 2015-04-24

Total Pages: 788

ISBN-13: 3662457504

DOWNLOAD EBOOK

This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.


Modeling, Analysis, Design, and Control of Stochastic Systems

Modeling, Analysis, Design, and Control of Stochastic Systems

Author: V. G. Kulkarni

Publisher: Springer

Published: 2014-01-13

Total Pages: 381

ISBN-13: 1475730985

DOWNLOAD EBOOK

An introductory level text on stochastic modelling, suited for undergraduates or graduates in actuarial science, business management, computer science, engineering, operations research, public policy, statistics, and mathematics. It employs a large number of examples to show how to build stochastic models of physical systems, analyse these models to predict their performance, and use the analysis to design and control them. The book provides a self-contained review of the relevant topics in probability theory: In discrete and continuous time Markov models it covers the transient and long term behaviour, cost models, and first passage times; under generalised Markov models, it covers renewal processes, cumulative processes and semi-Markov processes. All the material is illustrated with many examples, and the book emphasises numerical answers to the problems. A software package called MAXIM, which runs on MATLAB, is available for downloading.


Stochastic Models of Systems

Stochastic Models of Systems

Author: Vladimir S. Korolyuk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 195

ISBN-13: 940114625X

DOWNLOAD EBOOK

In this monograph stochastic models of systems analysis are discussed. It covers many aspects and different stages from the construction of mathematical models of real systems, through mathematical analysis of models based on simplification methods, to the interpretation of real stochastic systems. The stochastic models described here share the property that their evolutionary aspects develop under the influence of random factors. It has been assumed that the evolution takes place in a random medium, i.e. unilateral interaction between the system and the medium. As only Markovian models of random medium are considered in this book, the stochastic models described here are determined by two processes, a switching process describing the evolution of the systems and a switching process describing the changes of the random medium. Audience: This book will be of interest to postgraduate students and researchers whose work involves probability theory, stochastic processes, mathematical systems theory, ordinary differential equations, operator theory, or mathematical modelling and industrial mathematics.


Stochastic Discrete Event Systems

Stochastic Discrete Event Systems

Author: Armin Zimmermann

Publisher: Springer Science & Business Media

Published: 2008-01-12

Total Pages: 393

ISBN-13: 3540741739

DOWNLOAD EBOOK

Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.


Complex Stochastic Systems

Complex Stochastic Systems

Author: O.E. Barndorff-Nielsen

Publisher: CRC Press

Published: 2000-08-09

Total Pages: 306

ISBN-13: 9781420035988

DOWNLOAD EBOOK

Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.