Complex Population Dynamics

Complex Population Dynamics

Author: Peter Turchin

Publisher: Princeton University Press

Published: 2003-02-02

Total Pages: 470

ISBN-13: 0691090211

DOWNLOAD EBOOK

Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.


Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases

Author: Dongmei Chen

Publisher: John Wiley & Sons

Published: 2014-12-31

Total Pages: 496

ISBN-13: 1118629930

DOWNLOAD EBOOK

Features modern research and methodology on the spread of infectious diseases and showcases a broad range of multi-disciplinary and state-of-the-art techniques on geo-simulation, geo-visualization, remote sensing, metapopulation modeling, cloud computing, and pattern analysis Given the ongoing risk of infectious diseases worldwide, it is crucial to develop appropriate analysis methods, models, and tools to assess and predict the spread of disease and evaluate the risk. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features mathematical and spatial modeling approaches that integrate applications from various fields such as geo-computation and simulation, spatial analytics, mathematics, statistics, epidemiology, and health policy. In addition, the book captures the latest advances in the use of geographic information system (GIS), global positioning system (GPS), and other location-based technologies in the spatial and temporal study of infectious diseases. Highlighting the current practices and methodology via various infectious disease studies, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features: Approaches to better use infectious disease data collected from various sources for analysis and modeling purposes Examples of disease spreading dynamics, including West Nile virus, bird flu, Lyme disease, pandemic influenza (H1N1), and schistosomiasis Modern techniques such as Smartphone use in spatio-temporal usage data, cloud computing-enabled cluster detection, and communicable disease geo-simulation based on human mobility An overview of different mathematical, statistical, spatial modeling, and geo-simulation techniques Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases is an excellent resource for researchers and scientists who use, manage, or analyze infectious disease data, need to learn various traditional and advanced analytical methods and modeling techniques, and become aware of different issues and challenges related to infectious disease modeling and simulation. The book is also a useful textbook and/or supplement for upper-undergraduate and graduate-level courses in bioinformatics, biostatistics, public health and policy, and epidemiology.


Encyclopedia of Theoretical Ecology

Encyclopedia of Theoretical Ecology

Author: Alan Hastings

Publisher: Univ of California Press

Published: 2012-05-31

Total Pages: 848

ISBN-13: 0520269659

DOWNLOAD EBOOK

"A bold and successful attempt to illustrate the theoretical foundations of all of the subdisciplines of ecology, including basic and applied, and extending through biophysical, population, community, and ecosystem ecology. Encyclopedia of Theoretical Ecology is a compendium of clear and concise essays by the intellectual leaders across this vast breadth of knowledge."--Harold Mooney, Stanford University "A remarkable and indispensable reference work that also is flexible enough to provide essential readings for a wide variety of courses. A masterful collection of authoritative papers that convey the rich and fundamental nature of modern theoretical ecology."--Simon A. Levin, Princeton University "Theoretical ecologists exercise their imaginations to make sense of the astounding complexity of both real and possible ecosystems. Imagining a real or possible topic left out of the Encyclopedia of Theoretical Ecology has proven just as challenging. This comprehensive compendium demonstrates that theoretical ecology has become a mature science, and the volume will serve as the foundation for future creativity in this area."--Fred Adler, University of Utah "The editors have assembled an outstanding group of contributors who are a great match for their topics. Sometimes the author is a key, authoritative figure in a field; and at other times, the author has enough distance to convey all sides of a subject. The next time you need to introduce ecology students to a theoretical topic, you'll be glad to have this encyclopedia on your bookshelf."--Stephen Ellner, Cornell University “Everything you wanted to know about theoretical ecology, and much that you didn’t know you needed to know but will now! Alan Hastings and Louis Gross have done us a great service by bringing together in very accessible form a huge amount of information about a broad, complicated, and expanding field.”--Daniel Simberloff, University of Tennessee, Knoxville


The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach

The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach

Author: Isabel Averill

Publisher: American Mathematical Soc.

Published: 2017-01-18

Total Pages: 118

ISBN-13: 1470422026

DOWNLOAD EBOOK

The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population dynamics but different dispersal strategies: one species adopts random dispersal, while the dispersal strategy for the other species is a combination of random dispersal and advection upward along the resource gradient. For any given diffusion rates the authors consider the bifurcation diagram of positive steady states by using the advection rate as the bifurcation parameter. This approach enables the authors to capture the change of dynamics from weak advection to strong advection. The authors determine three different types of bifurcation diagrams, depending on the difference of diffusion rates. Some exact multiplicity results about bifurcation points are also presented. The authors' results can unify some previous work and, as a case study about the role of advection, also contribute to the understanding of intermediate (relative to diffusion) advection in reaction-diffusion models.


Infinite Dimensional Dynamical Systems

Infinite Dimensional Dynamical Systems

Author: John Mallet-Paret

Publisher: Springer Science & Business Media

Published: 2012-10-11

Total Pages: 495

ISBN-13: 1461445221

DOWNLOAD EBOOK

​This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.​


The Dynamics of Biological Systems

The Dynamics of Biological Systems

Author: Arianna Bianchi

Publisher: Springer Nature

Published: 2019-10-02

Total Pages: 278

ISBN-13: 3030225836

DOWNLOAD EBOOK

The book presents nine mini-courses from a summer school, Dynamics of Biological Systems, held at the University of Alberta in 2016, as part of the prestigious seminar series: Séminaire de Mathématiques Supérieures (SMS). It includes new and significant contributions in the field of Dynamical Systems and their applications in Biology, Ecology, and Medicine. The chapters of this book cover a wide range of mathematical methods and biological applications. They - explain the process of mathematical modelling of biological systems with many examples, - introduce advanced methods from dynamical systems theory, - present many examples of the use of mathematical modelling to gain biological insight - discuss innovative methods for the analysis of biological processes, - contain extensive lists of references, which allow interested readers to continue the research on their own. Integrating the theory of dynamical systems with biological modelling, the book will appeal to researchers and graduate students in Applied Mathematics and Life Sciences.


Integrodifference Equations in Spatial Ecology

Integrodifference Equations in Spatial Ecology

Author: Frithjof Lutscher

Publisher: Springer Nature

Published: 2019-10-30

Total Pages: 390

ISBN-13: 3030292940

DOWNLOAD EBOOK

This book is the first thorough introduction to and comprehensive treatment of the theory and applications of integrodifference equations in spatial ecology. Integrodifference equations are discrete-time continuous-space dynamical systems describing the spatio-temporal dynamics of one or more populations. The book contains step-by-step model construction, explicitly solvable models, abstract theory and numerical recipes for integrodifference equations. The theory in the book is motivated and illustrated by many examples from conservation biology, biological invasions, pattern formation and other areas. In this way, the book conveys the more general message that bringing mathematical approaches and ecological questions together can generate novel insights into applications and fruitful challenges that spur future theoretical developments. The book is suitable for graduate students and experienced researchers in mathematical ecology alike.


Introduction to Reaction-Diffusion Equations

Introduction to Reaction-Diffusion Equations

Author: King-Yeung Lam

Publisher: Springer Nature

Published: 2022-12-01

Total Pages: 316

ISBN-13: 3031204220

DOWNLOAD EBOOK

This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.


Modeling in Ecology and Epidemiology

Modeling in Ecology and Epidemiology

Author: Md. Shahidul Islam

Publisher: Frontiers Media SA

Published: 2024-10-23

Total Pages: 175

ISBN-13: 2832555942

DOWNLOAD EBOOK

Nature is filled with biotic organisms (bacteria, insects, plants, animals, etc.) and B-biotic elements of the environment (air, soil, and water). The life cycle of biotic elements is entirely dependent on the abiotic elements. Pathogens like viruses, bacteria, or other infectious agents can cause diseases in living creatures. The pathogens are capable of causing infectious disease directly, or they can also spread through the other multiple species (known as the Vector). Zoonosis is an infectious disease that has jumped from non-human animals to humans. Zoonotic pathogens may be bacterial, viral, or parasitic, involve unconventional agents, and can spread to humans through direct contact with food, water, or the environment. Currently, highly infectious human populations of diseases include HIV, SARS-CoV-2 (Covid-19), H1N1 flu (swine flu), Dengue (Vector-borne), and so forth. Another essential feature is the pollutant of the environment (like the pesticide used for agricultural purposes and oil in the seawater) that spread among the animals through the food. Therefore, it is crucial to study infectious disease dynamics in ecological systems and human populations.