Robust Mixed Model Analysis

Robust Mixed Model Analysis

Author: Jiang Jiming

Publisher: World Scientific

Published: 2019-04-10

Total Pages: 268

ISBN-13: 9814733857

DOWNLOAD EBOOK

Mixed-effects models have found broad applications in various fields. As a result, the interest in learning and using these models is rapidly growing. On the other hand, some of these models, such as the linear mixed models and generalized linear mixed models, are highly parametric, involving distributional assumptions that may not be satisfied in real-life problems. Therefore, it is important, from a practical standpoint, that the methods of inference about these models are robust to violation of model assumptions. Fortunately, there is a full scale of methods currently available that are robust in certain aspects. Learning about these methods is essential for the practice of mixed-effects models.This research monograph provides a comprehensive account of methods of mixed model analysis that are robust in various aspects, such as to violation of model assumptions, or to outliers. It is suitable as a reference book for a practitioner who uses the mixed-effects models, and a researcher who studies these models. It can also be treated as a graduate text for a course on mixed-effects models and their applications.


The Fence Methods

The Fence Methods

Author: Jiming Jiang

Publisher: World Scientific

Published: 2015-09-22

Total Pages: 248

ISBN-13: 9814596086

DOWNLOAD EBOOK

This book is about a recently developed class of strategies, known as the fence methods, which fits particularly well in non-conventional and complex model selection problems with practical considerations. The idea involves a procedure to isolate a subgroup of what are known as correct models, of which the optimal model is a member. This is accomplished by constructing a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is constructed, the optimal model is selected from amongst those within the fence according to a criterion which can be made flexible. In particular, the criterion of optimality can incorporate consideration of practical interest, thus making model selection a real life practice.Furthermore, this book introduces a data-driven approach, called adaptive fence, which can be used in a wide range of problems involving determination of tuning parameters, or constants. Instead of relying on asymptotic theory, the fence focuses on finite-sample performance, and computation. Such features are particularly suitable to statistics in the new era.


Mixed Effects Models for Complex Data

Mixed Effects Models for Complex Data

Author: Lang Wu

Publisher: CRC Press

Published: 2009-11-11

Total Pages: 431

ISBN-13: 9781420074086

DOWNLOAD EBOOK

Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.


Random Effect and Latent Variable Model Selection

Random Effect and Latent Variable Model Selection

Author: David Dunson

Publisher: Springer Science & Business Media

Published: 2010-03-18

Total Pages: 174

ISBN-13: 0387767215

DOWNLOAD EBOOK

Random Effect and Latent Variable Model Selection In recent years, there has been a dramatic increase in the collection of multivariate and correlated data in a wide variety of ?elds. For example, it is now standard pr- tice to routinely collect many response variables on each individual in a study. The different variables may correspond to repeated measurements over time, to a battery of surrogates for one or more latent traits, or to multiple types of outcomes having an unknown dependence structure. Hierarchical models that incorporate subje- speci?c parameters are one of the most widely-used tools for analyzing multivariate and correlated data. Such subject-speci?c parameters are commonly referred to as random effects, latent variables or frailties. There are two modeling frameworks that have been particularly widely used as hierarchical generalizations of linear regression models. The ?rst is the linear mixed effects model (Laird and Ware , 1982) and the second is the structural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors on the mean and the second to random effects characterizing the impact on the covariance. LMEs have also been increasingly used for function estimation. In implementing LME analyses, model selection problems are unavoidable. For example, there may be interest in comparing models with and without a predictor in the ?xed and/or random effects component.


Linear and Generalized Linear Mixed Models and Their Applications

Linear and Generalized Linear Mixed Models and Their Applications

Author: Jiming Jiang

Publisher: Springer Science & Business Media

Published: 2007-05-30

Total Pages: 269

ISBN-13: 0387479465

DOWNLOAD EBOOK

This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.


Linear and Nonlinear Models for the Analysis of Repeated Measurements

Linear and Nonlinear Models for the Analysis of Repeated Measurements

Author: Edward Vonesh

Publisher: CRC Press

Published: 1996-11-01

Total Pages: 590

ISBN-13: 9780824782481

DOWNLOAD EBOOK

Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.


Random Effect and Latent Variable Model Selection

Random Effect and Latent Variable Model Selection

Author: David Dunson

Publisher: Springer

Published: 2010-11-16

Total Pages: 170

ISBN-13: 9780387568393

DOWNLOAD EBOOK

Random Effect and Latent Variable Model Selection In recent years, there has been a dramatic increase in the collection of multivariate and correlated data in a wide variety of ?elds. For example, it is now standard pr- tice to routinely collect many response variables on each individual in a study. The different variables may correspond to repeated measurements over time, to a battery of surrogates for one or more latent traits, or to multiple types of outcomes having an unknown dependence structure. Hierarchical models that incorporate subje- speci?c parameters are one of the most widely-used tools for analyzing multivariate and correlated data. Such subject-speci?c parameters are commonly referred to as random effects, latent variables or frailties. There are two modeling frameworks that have been particularly widely used as hierarchical generalizations of linear regression models. The ?rst is the linear mixed effects model (Laird and Ware , 1982) and the second is the structural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors on the mean and the second to random effects characterizing the impact on the covariance. LMEs have also been increasingly used for function estimation. In implementing LME analyses, model selection problems are unavoidable. For example, there may be interest in comparing models with and without a predictor in the ?xed and/or random effects component.


Generalized Linear Mixed Models

Generalized Linear Mixed Models

Author: Charles E. McCulloch

Publisher: IMS

Published: 2003

Total Pages: 100

ISBN-13: 9780940600546

DOWNLOAD EBOOK

Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models