Model-Based Design and Integration of Large Li-ion Battery Systems

Model-Based Design and Integration of Large Li-ion Battery Systems

Author:

Publisher:

Published: 2015

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.


Handbook on Battery Energy Storage System

Handbook on Battery Energy Storage System

Author: Asian Development Bank

Publisher: Asian Development Bank

Published: 2018-12-01

Total Pages: 123

ISBN-13: 9292614711

DOWNLOAD EBOOK

This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.


The Handbook of Lithium-Ion Battery Pack Design

The Handbook of Lithium-Ion Battery Pack Design

Author: John T. Warner

Publisher: Elsevier

Published: 2024-05-14

Total Pages: 472

ISBN-13: 0443138087

DOWNLOAD EBOOK

The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?


Lithium-Ion Batteries

Lithium-Ion Batteries

Author: Gianfranco Pistoia

Publisher: Newnes

Published: 2013-12-16

Total Pages: 659

ISBN-13: 0444595163

DOWNLOAD EBOOK

Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries. - Contains all applications of consumer and industrial lithium-ion batteries, including reviews, in a single volume - Features contributions from the world's leading industry and research experts - Presents executive summaries of specific case studies - Covers information on basic research and application approaches


A Systems Approach to Lithium-Ion Battery Management

A Systems Approach to Lithium-Ion Battery Management

Author: Phil Weicker

Publisher: Artech House

Published: 2013-11-01

Total Pages: 301

ISBN-13: 1608076598

DOWNLOAD EBOOK

The advent of lithium ion batteries has brought a significant shift in the area of large format battery systems. Previously limited to heavy and bulky lead-acid storage batteries, large format batteries were used only where absolutely necessary as a means of energy storage. The improved energy density, cycle life, power capability, and durability of lithium ion cells has given us electric and hybrid vehicles with meaningful driving range and performance, grid-tied energy storage systems for integration of renewable energy and load leveling, backup power systems and other applications. This book discusses battery management system (BMS) technology for large format lithium-ion battery packs from a systems perspective. This resource covers the future of BMS, giving us new ways to generate, use, and store energy, and free us from the perils of non-renewable energy sources. This book provides a full update on BMS technology, covering software, hardware, integration, testing, and safety.


Battery Management Systems for Large Lithium Ion Battery Packs

Battery Management Systems for Large Lithium Ion Battery Packs

Author: Davide Andrea

Publisher: Artech House

Published: 2010

Total Pages: 302

ISBN-13: 1608071057

DOWNLOAD EBOOK

This timely book provides you with a solid understanding of battery management systems (BMS) in large Li-Ion battery packs, describing the important technical challenges in this field and exploring the most effective solutions. You find in-depth discussions on BMS topologies, functions, and complexities, helping you determine which permutation is right for your application. Packed with numerous graphics, tables, and images, the book explains the OC whysOCO and OC howsOCO of Li-Ion BMS design, installation, configuration and troubleshooting. This hands-on resource includes an unbiased description and comparison of all the off-the-shelf Li-Ion BMSs available today. Moreover, it explains how using the correct one for a given application can help to get a Li-Ion pack up and running in little time at low cost."


Printed Batteries

Printed Batteries

Author: Senentxu Lanceros-MĂ©ndez

Publisher: John Wiley & Sons

Published: 2018-04-23

Total Pages: 270

ISBN-13: 1119287421

DOWNLOAD EBOOK

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.


Battery Management Systems

Battery Management Systems

Author: H.J. Bergveld

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 311

ISBN-13: 9401708436

DOWNLOAD EBOOK

Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background.


Design and Analysis of Large Lithium-Ion Battery Systems

Design and Analysis of Large Lithium-Ion Battery Systems

Author: Shriram Santhanagopalan

Publisher: Artech House

Published: 2014-12-01

Total Pages: 241

ISBN-13: 1608077144

DOWNLOAD EBOOK

This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the field and this book is a direct response to frequently-received queries. With the authors’ unique expertise in areas such as battery thermal evaluation and design, physics-based modeling, and life and reliability assessment and prediction, this book is sure to provide you with essential, practical information on understanding, designing, and building large format Lithium-ion battery management systems.


Electrochemical Impedance Spectroscopy and its Applications

Electrochemical Impedance Spectroscopy and its Applications

Author: Andrzej Lasia

Publisher: Springer

Published: 2014-06-17

Total Pages: 376

ISBN-13: 1461489334

DOWNLOAD EBOOK

This book presents a complete overview of the powerful but often misused technique of Electrochemical Impedance Spectroscopy (EIS). The book presents a systematic and complete overview of EIS. The book carefully describes EIS and its application in studies of electrocatalytic reactions and other electrochemical processes of practical interest. This book is directed towards graduate students and researchers in Electrochemistry. Concepts are illustrated through detailed graphics and numerous examples. The book also includes practice problems. Additional materials and solutions are available online.