The text presents the conclusions of four years joint work of 12 European laboratories on mobile robotics technology for healthcare services. The book bridges the human factors and the demands of real-life applications to the achievements of the robotics technology. It is organize d in 15 chapters analyzing topics covering all the related fields and including but not limited to: user - application requirements, human machine interfacing, mobile robots' and mobile manipulators' control architectures, navigation and sensing strategies, and robot - smart building interconnection. It also provides technical details and hints to the reader on how to address real-life problems. The book also performs a historical review and includes an overview of the contemporary developments worldwide.
This book provides a thorough background to the emerging field of medical robotics. It covers the mathematics needed to understand the use of robotic devices in medicine, including but not limited to robot kinematics, hand-eye and robot-world calibration, reconstruction, registration, motion planning, motion prediction, motion correlation, motion replication and motion learning. Additionally, basic methods behind state-of-the art robots like the DaVinci system, the CyberKnife, motorized C-arms and operating microscopes as well as stereotactic frames are presented. The book is a text book for undergraduates in computer science and engineering. The main idea of the book is to motivate the methods in robotics in medical applications rather than industrial applications. The book then follows the standard path for a robotics textbook. It is thus suitable for a first course in robotics for undergraduates. It is the first textbook on medical robotics.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook’s team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/
The first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.
Telemedicine Technologies: Big Data, Deep Learning, Robotics, Mobile and Remote Applications for Global Healthcare illustrates the innovative concepts, methodologies and frameworks that will increase the feasibility of the existing telemedicine system. The book also focuses on showcasing prototypes of remote healthcare systems, thus emphasizing the data processing side that is often recognized as the backbone of any telemedicine system. - Illustrates the innovative concepts, methodologies and frameworks that will increase the feasibility of the existing telemedicine system - Focuses on showcasing prototypes of remote healthcare systems
Lays a good foundation for robotics' core concepts and principles in biomedical and healthcare engineering, walking the reader through the fundamental ideas with expert ease. Progresses on the topics in a step-by-step manner and reinforces theory with a full-fledged pedagogy designed to enhance students' understanding and offer them a practical insight into its applications. Features chapters that introduce and cover novel ideas in healthcare engineering like Applications of Robots in Surgery, Microrobots and Nanorobots in Healthcare Practices, Intelligent walker for posture monitoring, AI-Powered Robots in Biomedical and Hybrid Intelligent System for Medical Diagnosis, etc.
Showcases the latest trends in new virtual/augmented reality healthcare and medical applications and provides an overview of the economic, psychological, educational and organizational impacts of these new applications and how we work, teach, learn and provide care. With the current advances in technology innovation, the field of medicine and healthcare is rapidly expanding and, as a result, many different areas of human health diagnostics, treatment and care are emerging. Wireless technology is getting faster and 5G mobile technology allows the Internet of Medical Things (IoMT) to greatly improve patient care and more effectively prevent illness from developing. This book provides an overview and review of the current and anticipated changes in medicine and healthcare due to new technologies and faster communication between users and devices. The groundbreaking book presents state-of-the-art chapters on many subjects including: A review of the implications of Virtual Reality (VR) and Augmented Reality (AR) healthcare applications A review of current augmenting dental care An overview of typical human-computer interaction (HCI) that can help inform the development of user interface designs and novel ways to evaluate human behavior to responses in VR and other new technologies A review of telemedicine technologies Building empathy in young children using augmented reality AI technologies for mobile health of stroke monitoring & rehabilitation robotics control Mobile doctor brain AI App An artificial intelligence mobile cloud computing tool Development of a robotic teaching aid for disabled children Training system design of lower limb rehabilitation robot based on virtual reality
The integration of robotic systems and artificial intelligence into healthcare settings is accelerating. As these technological developments interact socially with children, the elderly, or the disabled, they may raise concerns besides mere physical safety; concerns that include data protection, inappropriate use of emotions, invasion of privacy, autonomy suppression, decrease in human interaction, and cognitive safety. Given the novelty of these technologies and the uncertainties surrounding the impact of care automation, it is unclear how the law should respond. This book investigates the legal and regulatory implications of the growing use of personal care robots for healthcare purposes. It explores the interplay between various aspects of the law, including safety, data protection, responsibility, transparency, autonomy, and dignity; and it examines different robotic and AI systems, such as social therapy robots, physical assistant robots for rehabilitation, and wheeled passenger carriers. Highlighting specific problems and challenges in regulating complex cyber-physical systems in concrete healthcare applications, it critically assesses the adequacy of current industry standards and emerging regulatory initiatives for robots and AI. After analyzing the potential legal and ethical issues associated with personal care robots, it concludes that the primarily principle-based approach of recent law and robotics studies is too abstract to be as effective as required by the personal care context. Instead, it recommends bridging the gap between general legal principles and their applicability in concrete robotic and AI technologies with a risk-based approach using impact assessments. As the first book to compile both legal and regulatory aspects of personal care robots, this book will be a valuable addition to the literature on robotics, artificial intelligence, human–robot interaction, law, and philosophy of technology.
Robotics is an ever-expanding field and intelligent planning continues to play a major role. Given that the intention of mobile robots is to carry out tasks independent from human aid, robot intelligence is needed to make and plan out decisions based on various sensors. Planning is the fundamental activity that implements this intelligence into the mobile robots to complete such tasks. Understanding problems, challenges, and solutions to path planning and how it fits in is important to the realm of robotics. Intelligent Planning for Mobile Robotics: Algorithmic Approaches presents content coverage on the basics of artificial intelligence, search problems, and soft computing approaches. This collection of research provides insight on both robotics and basic algorithms and could serve as a reference book for courses related to robotics, special topics in AI, planning, applied soft computing, applied AI, and applied evolutionary computing. It is an ideal choice for research students, scholars, and professors alike.