Mobile Data Mining and Applications

Mobile Data Mining and Applications

Author: Hao Jiang

Publisher: Springer

Published: 2019-05-10

Total Pages: 235

ISBN-13: 3030165035

DOWNLOAD EBOOK

This book focuses on mobile data and its applications in the wireless networks of the future. Several topics form the basis of discussion, from a mobile data mining platform for collecting mobile data, to mobile data processing, and mobile feature discovery. Usage of mobile data mining is addressed in the context of three applications: wireless communication optimization, applications of mobile data mining on the cellular networks of the future, and how mobile data shapes future cities. In the discussion of wireless communication optimization, both licensed and unlicensed spectra are exploited. Advanced topics include mobile offloading, resource sharing, user association, network selection and network coexistence. Mathematical tools, such as traditional convexappl/non-convex, stochastic processing and game theory are used to find objective solutions. Discussion of the applications of mobile data mining to cellular networks of the future includes topics such as green communication networks, 5G networks, and studies of the problems of cell zooming, power control, sleep/wake, and energy saving. The discussion of mobile data mining in the context of smart cities of the future covers applications in urban planning and environmental monitoring: the technologies of deep learning, neural networks, complex networks, and network embedded data mining. Mobile Data Mining and Applications will be of interest to wireless operators, companies, governments as well as interested end users.


Applications of Data Mining in Computer Security

Applications of Data Mining in Computer Security

Author: Daniel Barbará

Publisher: Springer Science & Business Media

Published: 2002-05-31

Total Pages: 286

ISBN-13: 9781402070549

DOWNLOAD EBOOK

Data mining is becoming a pervasive technology in activities as diverse as using historical data to predict the success of a marketing campaign, looking for patterns in financial transactions to discover illegal activities or analyzing genome sequences. From this perspective, it was just a matter of time for the discipline to reach the important area of computer security. Applications Of Data Mining In Computer Security presents a collection of research efforts on the use of data mining in computer security. Applications Of Data Mining In Computer Security concentrates heavily on the use of data mining in the area of intrusion detection. The reason for this is twofold. First, the volume of data dealing with both network and host activity is so large that it makes it an ideal candidate for using data mining techniques. Second, intrusion detection is an extremely critical activity. This book also addresses the application of data mining to computer forensics. This is a crucial area that seeks to address the needs of law enforcement in analyzing the digital evidence.


Introduction to Data Mining and its Applications

Introduction to Data Mining and its Applications

Author: S. Sumathi

Publisher: Springer

Published: 2006-10-12

Total Pages: 836

ISBN-13: 3540343512

DOWNLOAD EBOOK

This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.


Web Data Mining and Applications in Business Intelligence and Counter-Terrorism

Web Data Mining and Applications in Business Intelligence and Counter-Terrorism

Author: Bhavani Thuraisingham

Publisher: CRC Press

Published: 2003-06-26

Total Pages: 542

ISBN-13: 0203499514

DOWNLOAD EBOOK

The explosion of Web-based data has created a demand among executives and technologists for methods to identify, gather, analyze, and utilize data that may be of value to corporations and organizations. The emergence of data mining, and the larger field of Web mining, has businesses lost within a confusing maze of mechanisms and strategies for obta


Research and Trends in Data Mining Technologies and Applications

Research and Trends in Data Mining Technologies and Applications

Author: Taniar, David

Publisher: IGI Global

Published: 2006-10-31

Total Pages: 340

ISBN-13: 1599042738

DOWNLOAD EBOOK

Activities in data warehousing and mining are constantly emerging. Data mining methods, algorithms, online analytical processes, data mart and practical issues consistently evolve, providing a challenge for professionals in the field. Research and Trends in Data Mining Technologies and Applications focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real-world problems. This book provides an international perspective, highlighting solutions to some of researchers' toughest challenges. Developments in the knowledge discovery process, data models, structures, and design serve as answers and solutions to these emerging challenges.


Data Mining Applications with R

Data Mining Applications with R

Author: Yanchang Zhao

Publisher: Academic Press

Published: 2013-11-26

Total Pages: 493

ISBN-13: 0124115209

DOWNLOAD EBOOK

Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. - Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries - Presents various case studies in real-world applications, which will help readers to apply the techniques in their work - Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves


Data Mining Methods and Applications

Data Mining Methods and Applications

Author: Kenneth D. Lawrence

Publisher: Auerbach Publications

Published: 2008

Total Pages: 340

ISBN-13:

DOWNLOAD EBOOK

Addressing a variety of organizational issues, Data Mining Methods and Applications presents a compilation of recent research works on data mining and forecasting techniques, including multivariate, evolutionary, and neural net methods. This book focuses in particular on data mining techniques used for conducting marketing research. Written by a wide range of contributors from academia and industry, this text provides detailed descriptions of applications in numerous areas, such as finance, engineering, healthcare, economics, science, and management. Real-world case studies that are supported by theoretical chapters offer guidance on how to actually perform data mining methods.


Data Mining for Scientific and Engineering Applications

Data Mining for Scientific and Engineering Applications

Author: R.L. Grossman

Publisher: Springer Science & Business Media

Published: 2001-10-31

Total Pages: 632

ISBN-13: 9781402001147

DOWNLOAD EBOOK

Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.


Data Mining for Geoinformatics

Data Mining for Geoinformatics

Author: Guido Cervone

Publisher: Springer Science & Business Media

Published: 2013-08-16

Total Pages: 175

ISBN-13: 1461476690

DOWNLOAD EBOOK

The rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementation of computational algorithms to solve these problems. This unique volume contains a collection of chapters on state-of-the-art data mining techniques applied to geoinformatic problems of high complexity and important societal value. Data Mining for Geoinformatics addresses current concerns and developments relating to spatio-temporal data mining issues in remotely-sensed data, problems in meteorological data such as tornado formation, estimation of radiation from the Fukushima nuclear power plant, simulations of traffic data using OpenStreetMap, real time traffic applications of data stream mining, visual analytics of traffic and weather data and the exploratory visualization of collective, mobile objects such as the flocking behavior of wild chickens. This book is designed for researchers and advanced-level students focused on computer science, earth science and geography as a reference or secondary text book. Practitioners working in the areas of data mining and geoscience will also find this book to be a valuable reference.


Optimization Based Data Mining: Theory and Applications

Optimization Based Data Mining: Theory and Applications

Author: Yong Shi

Publisher: Springer Science & Business Media

Published: 2011-05-16

Total Pages: 314

ISBN-13: 0857295047

DOWNLOAD EBOOK

Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.