Mining Latent Entity Structures

Mining Latent Entity Structures

Author: Chi Wang

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 147

ISBN-13: 3031019075

DOWNLOAD EBOOK

The "big data" era is characterized by an explosion of information in the form of digital data collections, ranging from scientific knowledge, to social media, news, and everyone's daily life. Examples of such collections include scientific publications, enterprise logs, news articles, social media, and general web pages. Valuable knowledge about multi-typed entities is often hidden in the unstructured or loosely structured, interconnected data. Mining latent structures around entities uncovers hidden knowledge such as implicit topics, phrases, entity roles and relationships. In this monograph, we investigate the principles and methodologies of mining latent entity structures from massive unstructured and interconnected data. We propose a text-rich information network model for modeling data in many different domains. This leads to a series of new principles and powerful methodologies for mining latent structures, including (1) latent topical hierarchy, (2) quality topical phrases, (3) entity roles in hierarchical topical communities, and (4) entity relations. This book also introduces applications enabled by the mined structures and points out some promising research directions.


Mining Structures of Factual Knowledge from Text

Mining Structures of Factual Knowledge from Text

Author: Xiang Ren

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 183

ISBN-13: 3031019121

DOWNLOAD EBOOK

The real-world data, though massive, is largely unstructured, in the form of natural-language text. It is challenging but highly desirable to mine structures from massive text data, without extensive human annotation and labeling. In this book, we investigate the principles and methodologies of mining structures of factual knowledge (e.g., entities and their relationships) from massive, unstructured text corpora. Departing from many existing structure extraction methods that have heavy reliance on human annotated data for model training, our effort-light approach leverages human-curated facts stored in external knowledge bases as distant supervision and exploits rich data redundancy in large text corpora for context understanding. This effort-light mining approach leads to a series of new principles and powerful methodologies for structuring text corpora, including (1) entity recognition, typing and synonym discovery, (2) entity relation extraction, and (3) open-domain attribute-value mining and information extraction. This book introduces this new research frontier and points out some promising research directions.


Individual and Collective Graph Mining

Individual and Collective Graph Mining

Author: Danai Koutra

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 197

ISBN-13: 3031019113

DOWNLOAD EBOOK

Graphs naturally represent information ranging from links between web pages, to communication in email networks, to connections between neurons in our brains. These graphs often span billions of nodes and interactions between them. Within this deluge of interconnected data, how can we find the most important structures and summarize them? How can we efficiently visualize them? How can we detect anomalies that indicate critical events, such as an attack on a computer system, disease formation in the human brain, or the fall of a company? This book presents scalable, principled discovery algorithms that combine globality with locality to make sense of one or more graphs. In addition to fast algorithmic methodologies, we also contribute graph-theoretical ideas and models, and real-world applications in two main areas: Individual Graph Mining: We show how to interpretably summarize a single graph by identifying its important graph structures. We complement summarization with inference, which leverages information about few entities (obtained via summarization or other methods) and the network structure to efficiently and effectively learn information about the unknown entities. Collective Graph Mining: We extend the idea of individual-graph summarization to time-evolving graphs, and show how to scalably discover temporal patterns. Apart from summarization, we claim that graph similarity is often the underlying problem in a host of applications where multiple graphs occur (e.g., temporal anomaly detection, discovery of behavioral patterns), and we present principled, scalable algorithms for aligning networks and measuring their similarity. The methods that we present in this book leverage techniques from diverse areas, such as matrix algebra, graph theory, optimization, information theory, machine learning, finance, and social science, to solve real-world problems. We present applications of our exploration algorithms to massive datasets, including a Web graph of 6.6 billion edges, a Twitter graph of 1.8 billion edges, brain graphs with up to 90 million edges, collaboration, peer-to-peer networks, browser logs, all spanning millions of users and interactions.


Phrase Mining from Massive Text and Its Applications

Phrase Mining from Massive Text and Its Applications

Author: Jialu Liu

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 79

ISBN-13: 3031019105

DOWNLOAD EBOOK

A lot of digital ink has been spilled on "big data" over the past few years. Most of this surge owes its origin to the various types of unstructured data in the wild, among which the proliferation of text-heavy data is particularly overwhelming, attributed to the daily use of web documents, business reviews, news, social posts, etc., by so many people worldwide.A core challenge presents itself: How can one efficiently and effectively turn massive, unstructured text into structured representation so as to further lay the foundation for many other downstream text mining applications? In this book, we investigated one promising paradigm for representing unstructured text, that is, through automatically identifying high-quality phrases from innumerable documents. In contrast to a list of frequent n-grams without proper filtering, users are often more interested in results based on variable-length phrases with certain semantics such as scientific concepts, organizations, slogans, and so on. We propose new principles and powerful methodologies to achieve this goal, from the scenario where a user can provide meaningful guidance to a fully automated setting through distant learning. This book also introduces applications enabled by the mined phrases and points out some promising research directions.


Mining Human Mobility in Location-Based Social Networks

Mining Human Mobility in Location-Based Social Networks

Author: Huiji Gao

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 99

ISBN-13: 3031019083

DOWNLOAD EBOOK

In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook Places, which have attracted an increasing number of users and greatly enriched their urban experience. Typical location-based social networking sites allow a user to "check in" at a real-world POI (point of interest, e.g., a hotel, restaurant, theater, etc.), leave tips toward the POI, and share the check-in with their online friends. The check-in action bridges the gap between real world and online social networks, resulting in a new type of social networks, namely location-based social networks (LBSNs). Compared to traditional GPS data, location-based social networks data contains unique properties with abundant heterogeneous information to reveal human mobility, i.e., "when and where a user (who) has been to for what," corresponding to an unprecedented opportunity to better understand human mobility from spatial, temporal, social, and content aspects. The mining and understanding of human mobility can further lead to effective approaches to improve current location-based services from mobile marketing to recommender systems, providing users more convenient life experience than before. This book takes a data mining perspective to offer an overview of studying human mobility in location-based social networks and illuminate a wide range of related computational tasks. It introduces basic concepts, elaborates associated challenges, reviews state-of-the-art algorithms with illustrative examples and real-world LBSN datasets, and discusses effective evaluation methods in mining human mobility. In particular, we illustrate unique characteristics and research opportunities of LBSN data, present representative tasks of mining human mobility on location-based social networks, including capturing user mobility patterns to understand when and where a user commonly goes (location prediction), and exploiting user preferences and location profiles to investigate where and when a user wants to explore (location recommendation), along with studying a user's check-in activity in terms of why a user goes to a certain location.


Multidimensional Mining of Massive Text Data

Multidimensional Mining of Massive Text Data

Author: Chao Zhang

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 183

ISBN-13: 3031019148

DOWNLOAD EBOOK

Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional—they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task. This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making. The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.


Exploratory Causal Analysis with Time Series Data

Exploratory Causal Analysis with Time Series Data

Author: James M. McCracken

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 133

ISBN-13: 3031019091

DOWNLOAD EBOOK

Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.


Correlation Clustering

Correlation Clustering

Author: Bonchi Francesco

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 133

ISBN-13: 3031792106

DOWNLOAD EBOOK

Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters. In most of the variants of correlation clustering, the number of clusters is not a given parameter; instead, the optimal number of clusters is automatically determined. Correlation clustering is perhaps the most natural formulation of clustering: as it just needs a definition of similarity, its broad generality makes it applicable to a wide range of problems in different contexts, and, particularly, makes it naturally suitable to clustering structured objects for which feature vectors can be difficult to obtain. Despite its simplicity, generality, and wide applicability, correlation clustering has so far received much more attention from an algorithmic-theory perspective than from the data-mining community. The goal of this lecture is to show how correlation clustering can be a powerful addition to the toolkit of a data-mining researcher and practitioner, and to encourage further research in the area.


Detecting Fake News on Social Media

Detecting Fake News on Social Media

Author: Kai Shu

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 121

ISBN-13: 3031019156

DOWNLOAD EBOOK

In the past decade, social media has become increasingly popular for news consumption due to its easy access, fast dissemination, and low cost. However, social media also enables the wide propagation of "fake news," i.e., news with intentionally false information. Fake news on social media can have significant negative societal effects. Therefore, fake news detection on social media has recently become an emerging research area that is attracting tremendous attention. This book, from a data mining perspective, introduces the basic concepts and characteristics of fake news across disciplines, reviews representative fake news detection methods in a principled way, and illustrates challenging issues of fake news detection on social media. In particular, we discussed the value of news content and social context, and important extensions to handle early detection, weakly-supervised detection, and explainable detection. The concepts, algorithms, and methods described in this lecture can help harness the power of social media to build effective and intelligent fake news detection systems. This book is an accessible introduction to the study of detecting fake news on social media. It is an essential reading for students, researchers, and practitioners to understand, manage, and excel in this area. This book is supported by additional materials, including lecture slides, the complete set of figures, key references, datasets, tools used in this book, and the source code of representative algorithms. The readers are encouraged to visit the book website for the latest information: http://dmml.asu.edu/dfn/


Exploiting the Power of Group Differences

Exploiting the Power of Group Differences

Author: Guozhu Dong

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 135

ISBN-13: 303101913X

DOWNLOAD EBOOK

This book presents pattern-based problem-solving methods for a variety of machine learning and data analysis problems. The methods are all based on techniques that exploit the power of group differences. They make use of group differences represented using emerging patterns (aka contrast patterns), which are patterns that match significantly different numbers of instances in different data groups. A large number of applications outside of the computing discipline are also included. Emerging patterns (EPs) are useful in many ways. EPs can be used as features, as simple classifiers, as subpopulation signatures/characterizations, and as triggering conditions for alerts. EPs can be used in gene ranking for complex diseases since they capture multi-factor interactions. The length of EPs can be used to detect anomalies, outliers, and novelties. Emerging/contrast pattern based methods for clustering analysis and outlier detection do not need distance metrics, avoiding pitfalls of the latter in exploratory analysis of high dimensional data. EP-based classifiers can achieve good accuracy even when the training datasets are tiny, making them useful for exploratory compound selection in drug design. EPs can serve as opportunities in opportunity-focused boosting and are useful for constructing powerful conditional ensembles. EP-based methods often produce interpretable models and results. In general, EPs are useful for classification, clustering, outlier detection, gene ranking for complex diseases, prediction model analysis and improvement, and so on. EPs are useful for many tasks because they represent group differences, which have extraordinary power. Moreover, EPs represent multi-factor interactions, whose effective handling is of vital importance and is a major challenge in many disciplines. Based on the results presented in this book, one can clearly say that patterns are useful, especially when they are linked to issues of interest. We believe that many effective ways to exploit group differences' power still remain to be discovered. Hopefully this book will inspire readers to discover such new ways, besides showing them existing ways, to solve various challenging problems.