MINING INTEGRAL ACTINIDES CROSS SECTIONS FROM REACTOR DATA.

MINING INTEGRAL ACTINIDES CROSS SECTIONS FROM REACTOR DATA.

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The conclusions of this paper are: (1) mining of actinide cross-sections from reactor data is a viable and inexpensive approach to confirm burn-up codes; (2) extensive data for actinides in Hanford test data ((almost equal to) 200 radiochemical analyses); (3) not only cross-section values and reaction rates can be established but also possible benchmark like data can be constructed to test and validate reactor and criticality safety codes such as SCALE/KENO or MCNPX; and (4) analysis along multiple transmutation paths can be evaluated to show consistency.


Actinide Integral Measurements in the CFRMF and Integral Tests for ENDF

Actinide Integral Measurements in the CFRMF and Integral Tests for ENDF

Author:

Publisher:

Published: 1982

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Integral capture and/or fission rates have been reported earlier for several actinides irradiated in the fast neutron field of the Coupled Fast Reactivity Measurements Facility (CFRMF). These nuclides include 232Th, 233U, 235U, 238U, 237Np, 239Pu, 24°Pu, 242Pu, 241Am and 243Am. This paper forucses on the utilization of these integral data for testing the respective cross sections on ENDF/B-V. Integral cross sections derived from the measured reaction rates are tabulated. Results are presented for cross-section data testing which includes integral testing based on a comparison of calculated and measured integral cross sections and testing based on least-squares-adjustment analyses.


Cross Sections for Actinide Burner Reactors

Cross Sections for Actinide Burner Reactors

Author:

Publisher:

Published: 1991

Total Pages: 4

ISBN-13:

DOWNLOAD EBOOK

Recent studies have shown the feasibility of burning higher actinides (i.e., transuranium (TRU) elements excluding plutonium) in ad hoc designed reactors (Actinide Burner Reactors: ABR) which, because of their hard neutron spectra, enhance the fission of TRU. The transmutation of long-lived radionuclides into stable or short-lived isotopes reduces considerably the burden of handling high-level waste from either LWR or Fast Breeder Reactors (FBR) fuels. Because of the large concentrations of higher actinides in these novel reactor designs the Doppler effect due to TRU materials is the most important temperature coefficient from the point of view of reactor safety. Here we report calculations of energy group-averaged capture and fission cross sections as function of temperature and dilution for higher actinides in the resolved and unresolved resonance regions. The calculations were done with the codes SAMMY in the resolved region and URR in the unresolved regions and compared with an independent calculation. 4 refs., 2 figs., 2 tabs.


Nuclear Data for Science and Technology

Nuclear Data for Science and Technology

Author: Syed M. Qaim

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1041

ISBN-13: 3642581137

DOWNLOAD EBOOK

This book describes the Proceedings of the International Conference on Nuclear Data for Science and Technology held at Jillich in May 1991. The conference was in a series of application oriented nuclear data conferences organized in the past under the auspices of the Nuclear Energy Agency-Nuclear Data Committee (NEANDC) and with the support of the Nuclear Energy Agency-Committee on Reactor Physics (NEACRP). It was the fIrst international conference on nuclear data held in Germany, with the scientific responsibility entrusted to the Institute of Nuclear Chemistry of the Research Centre Jillich. The scientific programme was established by the International Programme Committee in consultation with the International Advisers, and the NEA and IAEA cooperated in the organization. A total of 328 persons from 37 countries and fIve international organizations participated. The scope of these Proceedings extends to a wide range of interdisciplinary topics dealing with measu rement, calculation, evaluation and application of nuclear data, with a major emphasis on numerical data. Both energy and non-energy related applications are considered and due attention is given to some fundamental aspects relevant to the understanding of nuclear data.