Minimax Systems and Critical Point Theory

Minimax Systems and Critical Point Theory

Author: Martin Schechter

Publisher: Springer Science & Business Media

Published: 2009-05-28

Total Pages: 239

ISBN-13: 0817649026

DOWNLOAD EBOOK

This text starts at the foundations of the field, and is accessible with some background in functional analysis. As such, the book is ideal for classroom of self study. The new material covered also makes this book a must read for researchers in the theory of critical points.


Minimax Methods in Critical Point Theory with Applications to Differential Equations

Minimax Methods in Critical Point Theory with Applications to Differential Equations

Author: Paul H. Rabinowitz

Publisher: American Mathematical Soc.

Published: 1986-07-01

Total Pages: 110

ISBN-13: 0821807153

DOWNLOAD EBOOK

The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.


Critical Point Theory and Hamiltonian Systems

Critical Point Theory and Hamiltonian Systems

Author: Jean Mawhin

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 292

ISBN-13: 1475720610

DOWNLOAD EBOOK

FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN


Critical Point Theory for Lagrangian Systems

Critical Point Theory for Lagrangian Systems

Author: Marco Mazzucchelli

Publisher: Springer Science & Business Media

Published: 2011-11-16

Total Pages: 196

ISBN-13: 3034801637

DOWNLOAD EBOOK

Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.


Critical Point Theory

Critical Point Theory

Author: Martin Schechter

Publisher: Springer Nature

Published: 2020-05-30

Total Pages: 347

ISBN-13: 303045603X

DOWNLOAD EBOOK

This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.


Control Of Nonlinear Distributed Parameter Systems

Control Of Nonlinear Distributed Parameter Systems

Author: Goong Chen

Publisher: CRC Press

Published: 2001-03-14

Total Pages: 380

ISBN-13: 0824745051

DOWNLOAD EBOOK

An examination of progress in mathematical control theory applications. It provides analyses of the influence and relationship of nonlinear partial differential equations to control systems and contains state-of-the-art reviews, including presentations from a conference co-sponsored by the National Science Foundation, the Institute of Mathematics and its Applications, the University of Minnesota, and Texas A&M University.


Solutions Of Nonlinear Differential Equations: Existence Results Via The Variational Approach

Solutions Of Nonlinear Differential Equations: Existence Results Via The Variational Approach

Author: Lin Li

Publisher: World Scientific

Published: 2016-04-15

Total Pages: 362

ISBN-13: 9813108622

DOWNLOAD EBOOK

Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.


Topics in Critical Point Theory

Topics in Critical Point Theory

Author: Kanishka Perera

Publisher: Cambridge University Press

Published: 2013

Total Pages: 171

ISBN-13: 110702966X

DOWNLOAD EBOOK

Provides an introduction to critical point theory and shows how it solves many difficult problems.


Handbook of Topological Fixed Point Theory

Handbook of Topological Fixed Point Theory

Author: Robert F. Brown

Publisher: Springer Science & Business Media

Published: 2005-07-21

Total Pages: 990

ISBN-13: 9781402032219

DOWNLOAD EBOOK

This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.


Control and Boundary Analysis

Control and Boundary Analysis

Author: John Cagnol

Publisher: CRC Press

Published: 2005-03-04

Total Pages: 327

ISBN-13: 1420027425

DOWNLOAD EBOOK

This volume comprises selected papers from the 21st Conference on System Modeling and Optimization in Sophia Antipolis, France. It covers over three decades of studies involving partial differential systems and equations. Topics include: the modeling of continuous mechanics involving fixed boundary, control theory, shape optimization and moving bou