Mid-Latitude Atmospheric Dynamics

Mid-Latitude Atmospheric Dynamics

Author: Jonathan E. Martin

Publisher: John Wiley & Sons

Published: 2013-05-23

Total Pages: 345

ISBN-13: 1118687892

DOWNLOAD EBOOK

This exciting text provides a mathematically rigorous yet accessible textbook that is primarily aimed at atmospheric science majors. Its accessibility is due to the texts emphasis on conceptual understanding. The first five chapters constitute a companion text to introductory courses covering the dynamics of the mid-latitude atmosphere. The final four chapters constitute a more advanced course, and provide insights into the diagnostic power of the quasi-geostrophic approximation of the equations outlined in the previous chapters, the meso-scale dynamics of thefrontal zone, the alternative PV perspective for cyclone interpretation, and the dynamics of the life-cycle of mid-latitude cyclones. Written in a clear and accessible style Features real weather examples and global case studies Each chapter sets out clear learning objectives and tests students’ knowledge with concluding questions and answers A Solutions Manual is also available for this textbook on the Instructor Companion Site www.wileyeurope.com/college/martin. “...a student-friendly yet rigorous textbook that accomplishes what no other textbook has done before... I highly recommend this textbook. For instructors, this is a great book if they don’t have their own class notes – one can teach straight from the book. And for students, this is a great book if they don’t take good class notes – one can learn straight from the book. This is a rare attribute of advanced textbooks.” Bulletin of the American Meteorological Society (BAMS), 2008


Middle Atmosphere

Middle Atmosphere

Author: PLUMB

Publisher: Birkhäuser

Published: 2013-11-21

Total Pages: 465

ISBN-13: 3034858256

DOWNLOAD EBOOK

PAGEOPH, stratosphere, these differences provide us with new evidence, interpretation of which can materially help to advance our understanding of stratospheric dynamics in general. It is now weil established that smaller-scale motions-in particular gravity waves and turbulence-are of fundamental importance in the general circulation of the mesosphere; they seem to be similarly, if less spectacularly, significant in the troposphere, and probably also in the stratosphere. Our understanding of these motions, their effects on the mean circulation and their mutual interactions is progressing rapidly, as is weil illustrated by the papers in this issue; there are reports of observational studies, especially with new instruments such as the Japanese MV radar, reviews of the state of theory, a laboratory study and an analysis of gravity waves and their effects in the high resolution "SKYHI" general circulation model. There are good reasons to suspect that gravity waves may be of crucial significance in making the stratospheric circulation the way it is (modeling experience being one suggestive piece of evidence for this). Direct observational proof has thus far been prevented by the difficulty of making observations of such scales of motion in this region; in one study reported here, falling sphere observations are used to obtain information on the structure and intensity of waves in the upper stratosphere.


Fluid Dynamics of the Mid-Latitude Atmosphere

Fluid Dynamics of the Mid-Latitude Atmosphere

Author: Brian J. Hoskins

Publisher: John Wiley & Sons

Published: 2014-08-28

Total Pages: 434

ISBN-13: 111852604X

DOWNLOAD EBOOK

This book gives a coherent development of the current understanding of the fluid dynamics of the middle latitude atmosphere. It is primarily aimed at post-graduate and advanced undergraduate level students and does not assume any previous knowledge of fluid mechanics, meteorology or atmospheric science. The book will be an invaluable resource for any quantitative atmospheric scientist who wishes to increase their understanding of the subject. The importance of the rotation of the Earth and the stable stratification of its atmosphere, with their implications for the balance of larger-scale flows, is highlighted throughout. Clearly structured throughout, the first of three themes deals with the development of the basic equations for an atmosphere on a rotating, spherical planet and discusses scale analyses of these equations. The second theme explores the importance of rotation and introduces vorticity and potential vorticity, as well as turbulence. In the third theme, the concepts developed in the first two themes are used to give an understanding of balanced motion in real atmospheric phenomena. It starts with quasi-geostrophic theory and moves on to linear and nonlinear theories for mid-latitude weather systems and their fronts. The potential vorticity perspective on weather systems is highlighted with a discussion of the Rossby wave propagation and potential vorticity mixing covered in the final chapter.


The Atmosphere and Climate of Mars

The Atmosphere and Climate of Mars

Author: Robert M. Haberle

Publisher: Cambridge University Press

Published: 2017-06-29

Total Pages: 613

ISBN-13: 1107016185

DOWNLOAD EBOOK

This volume reviews all aspects of Mars atmospheric science from the surface to space, and from now and into the past.


Middle Atmosphere Dynamics

Middle Atmosphere Dynamics

Author: David G. Andrews

Publisher: Academic Press

Published: 2016-07-21

Total Pages: 502

ISBN-13: 0080954677

DOWNLOAD EBOOK

For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography. * Written at a mathematical level that is appealing for undergraduates and beginning graduate students * Provides a useful educational tool through a combination of observations and laboratory demonstrations which can be viewed over the web * Contains instructions on how to reproduce the simple but informative laboratory experiments * Includes copious problems (with sample answers) to help students learn the material.


Atmosphere, Ocean and Climate Dynamics

Atmosphere, Ocean and Climate Dynamics

Author: John Marshall

Publisher: Academic Press

Published: 1965-01-01

Total Pages: 0

ISBN-13: 0080954456

DOWNLOAD EBOOK

For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography.* Written at a mathematical level that is appealing for undergraduates andbeginning graduate students* Provides a useful educational tool through a combination of observations andlaboratory demonstrations which can be viewed over the web* Contains instructions on how to reproduce the simple but informativelaboratory experiments* Includes copious problems (with sample answers) to help students learn thematerial.


Modeling of Atmospheric Chemistry

Modeling of Atmospheric Chemistry

Author: Guy P. Brasseur

Publisher: Cambridge University Press

Published: 2017-06-19

Total Pages: 631

ISBN-13: 1108210953

DOWNLOAD EBOOK

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.