Two Nobel Laureates present a systematic, comprehensive account of the theory, techniques, experimental data, and interpretation involved in the study of microwave spectroscopy. Eighteen self-contained chapters on key topics may be read individually or serially, making this volume ideal as a reference as well as a textbook. 190 tables and figures. 1955 edition.
Introduction -- The rigid diatomic rotor The spectra of diatomic and linear molecules -- The rotational spectra of none-linear molecules -- The determination of bond lengths and angles from microwave measurements -- The Stark effect in molecular spectra -- Inversion and restricted rotation -- Experimental methods of microwave spectroscopy -- Appendix 1. The Laplacian operator in spherical polar co-ordinates -- Appendix 2. Orthogonality and normalization of associated Legendre polynomials -- Appendix 3. The selection rules and matrix elements for electric dipole transitions of the diatomic rigid rotor -- Appendix 4. Solution of the wave equation for the symmetric top -- Appendix 5. Some properties of inertial dyadics -- Electric quadrupole moments.
In this important book, the author summarizes and generalizes the results of 25 years of work in this exciting field, which has been developing extensively within the last few decades. The reader will find discussions of many crystals that were investigated in the microwave region, including low-dimensional and ferroelectric semiconductors, protonic conductors, quasi-one-dimensional H-bonded. and other order-disorder ferroelectrics. This volume is an essential reference for all scientists and graduate students whose interests are connected to the physics of ferroelectrics and related materials; the physics of structural phase transitions; and superionic conductors. It will also be of value to those interested in developing or exploiting microwave measurement techniques.
Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapters discuss work on biological systems and three others represent laser physics. The recent advances in cavity ringdown spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS), two-dimensional correlation spectroscopy (2D-COS), and microwave techniques are all covered. Chapters on electronic excited states, molecular dynamics, symmetry applications, and neutron scattering are also included and demonstrate the wide utility of spectroscopic techniques. - Provides comprehensive coverage of present spectroscopic investigations - Features 20 chapters written by leading researchers in the field - Covers the important role of molecular spectroscopy in research concerned with chemistry, physics, and biology
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.